INTERNATIONAL ISO/IEC/

STANDARD IEEE
29119-4

First edition
2015-12-01

Software-and-systems-engineering —
Software testing —

Part 4:
Test techniques

Ingénierie du logiciel et des systémes — Essais du logiciel —

Partie 4: Techniques d’essai

@ I E E E ©1S0/IEC 2015
4 © IEEE 2015

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

PN Reference number
ISOlIEC 1SO/IEC/IEEE 29119-4:2015(E)
A\ g

ISO/IEC/IEEE 29119-4:2015(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat, the
IEC Central Office and IEEE do not accept any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and
IEEE members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or IEEE at the address
given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015
© IEEE 2015

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from ISO, IEC or IEEE at the respective
address below.

ISO copyright office IEC Central Office Institute of Electrical and Electronics Engineers, Inc. 3
Ch. de Blandonnet 8 - CP 401 3, rue de Varembé Park Avenue, New York

CH-1214 Vernier, Geneva, Switzerland CH-1211 Geneva 20 NY 10016-5997, USA

Tel. +4122749 0111 Switzerland E-mail stds.ipr@ieee.org

Fax +4122749 0947 E-mail inmail@iec.ch Web www.ieee.org

copyright@iso.org Web www.iec.ch

www.iso.org

Published in Switzerland

© ISO/IEC 2015 - All rights reserved
ii © IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Contents Page
FOT@WOTTM ... \%
Introduction
1 Scope
2 COMEOTTIMATIICE ...
2.1 INEEINIAEA USAZE ..ot
2.2 Full Conformance
2.3 TaIlOT€d CONMOTINATICE ..o 1
3 NOIMALIVE REFEI@IICES ...t 1
Terms and DefiNitIONISoooiiii oo 2
5 TeSt DeSigN T@CHIIQUES ... 4
5.1 OVEIVIBW ... 4
5.2 Specification-Based Test Design TeChNIQUES ... 7
5.2.1 Equivalence Partitioningo 7
5.2.2 Classification Tree Method. ...ttt 8
5.2.3 Boundary Value ANALYSIS ...ttt 9
5.24 Syntax Testing
5.2.5 Combinatorial Test Design TeChNIQUES ... 12
ST D T<Tod 13 10} T I U0 (0 T oV OSSO 15
5.2.7 Cause-Effect Graphing
5.2.8 State TransSition TeSTINE ... 16
5.2.9 SCENAITO TESTINEG ..o 17
5.2.10 RANAOIM TESTINZ ..ot 18
5.3 Structure-Based Test Design TeChNIQUES.........ciriicsssess s 18
531 StatemMent TESTINE ... 18
5.3.2 BIanCh TESHING ..o 19
5.3.3 DECISION TOSTINE. ..o 20
5.34 Branch Condition TESTINE ...t 20
5.3.5 Branch Condition Combination TeSTING ... 21
5.3.6 Modified Condition Decision Coverage (MCDC) TeSting ... 21
5.3.7 DAt FIOW TESTIIIZ ... 22
5.4 Experience-Based Test Design TeChNIQUES ...t 25
541 ETTOT GUESSIIE oo 25
6 Test COVErage MEASUTIEIMIEIIToocciiieriiieietsiesess s estise oottt 25
6.1 OVETVIBW ... 25
6.2 Test Measurement for Specification-Based Test Design Techniques ... 26
6.2.1 Equivalence Partition Coverage
6.2.2 Classification Tree Method COVETAZE ...ttt 26
6.2.3 Boundary Value AnalysiS COVETAZE. ... e 26
6.2.4 Syntax TeSting COVETAZE. ...ttt oo oo 26
6.2.5 Combinatorial Test Design Technique COVErage........iiiiiesssis, 27
6.2.6 Decision Table TeSting COVETAZE. ...t 27
6.2.7 Cause-Effect Graphing Coverage
6.2.8 State Transition Testing Coverage
6.2.9 Scenario TeStiNg COVEIAZE.ttt
6.2.10 Random Testing COVETage ...
6.3 Test Measurement for Structure-Based Test Design Techniques............cin.
6.3.1 Statement TEStING COVEIAZE. ... oo 29
6.3.2 Branch TeSting COVEIAZE. ...ttt 29
6.3.3 DeCiSion TeStING COVETAZE ...ttt 29
6.3.4 Branch Condition TeStiNG COVETAZEccuurerriereeisiers oo 29
6.3.5 Branch Condition Combination Testing COVEIrage ..., 29
6.3.6 Modified Condition Decision (MCDC) Testing COVErage ... 30
© ISO/IEC 2015 - All rights reserved iil

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

6.3.7 Data FIOW TeStiNG COVETAZE ... oo 30

6.4 Test Measurement for Experience-Based Testing Design Techniques.........cci. 31

6.4.1 Error GUESSING COVEIAZE ...ttt oo 31

Annex A (informative) Testing Quality CharacteriStiCs........... .. 32

Annex B (informative) Guidelines and Examples for the Application of Specification-Based
Test DeSiN TECHIIQUES ... 43

Annex C (informative) Guidelines and Examples for the Application of Structure-Based
Test DeSi@N TECHIIQUES ...t 103

Annex D (informative) Guidelines and Examples for the Application of Experience-Based
Test DeSi@N TECHIIQUESoocciiiiiii e 126

Annex E (informative) Guidelines and Examples for the Application of Interchangeable
Test DeSiBN TECHIIQUESoocccoiii e

Annex F (informative) Test Design Technique Coverage Effectiveness
Annex G (informative) ISO/IEC/IEEE 29119-4 and BS 7925-2 Test Design Technique Alignment135
BIBDLEOGIAPIY ... 137

iv © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC]TC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, SC 7, Software
and Systems Engineering.

ISO/IEC/IEEE 29119 consists of the following standards, under the general title Software and Systems
Engineering — Software Testing:

— Part 1: Concepts and definitions

— Part 2: Test processes

— Part 3: Test documentation

— Part 4: Test techniques

The following parts are under preparation:

— Part 5: Keyword-driven testing

© ISO/IEC 2015 - All rights reserved \
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

ISO/IEC/IEEE 29119-4:2015(E)

Introduction

The purpose of this part of ISO/IEC/IEEE 29119 is to provide an International Standard that defines
software test design techniques (also known as test case design techniques or test methods) that can be
used within the test design and implementation process that is defined in ISO/IEC/IEEE 29119-2. This
part of ISO/IEC/IEEE 29119 does not prescribe a process for test design and implementation; instead, it
describes a set of techniques that can be used within ISO/IEC/IEEE 29119-2. The intent is to describe a
series of techniques that have wide acceptance in the software testing industry.

The test design techniques presented in this part of ISO/IEC/IEEE 29119 can be used to derive test
cases that, when executed, generate evidence that test item requirements have been met and/or that
defects are present in a test item (i.e. that requirements have not been met). Risk-based testing could be
used to determine the set of techniques that are applicable in specific situations (risk-based testing is
covered in ISO/IEC/IEEE 29119-1 and ISO/IEC/IEEE 29119-2).

NOTE A “testitem” is a work product that is being tested (see ISO/IEC/IEEE 29119-1).

EXAMPLE1 “Test items” include systems, software items, objects, classes, requirements documents, design
specifications, and user guides.

Each technique follows the test design and implementation process that is defined in ISO/IEC/
IEEE 29119-2 and shown in Figure 1.

Of the activities in this process, ISO/IEC/IEEE 29119-4 provides guidance on how to implement the
following activities in detail for each technique that is described:

— Derive Test Conditions (TD2);
— Derive Test Coverage Items (TD3);
— Derive Test Cases (TD4).

Atest condition is a testable aspect of a test item, such as a function, transaction, feature, quality attribute,
or structural element identified as a basis for testing. This determination can be achieved by agreeing
with stakeholders which attributes are to be tested or by applying one or more test design techniques.

EXAMPLE 2 If a test completion criterion for state transition testing was identified that required coverage of
all states then the test conditions could be the states the test item can be in. Other examples of test conditions are
equivalence classes and boundaries between them.

Test coverage items are attributes of each test condition that can be covered during testing. A single
test condition may be the basis for one or more test coverage items.

EXAMPLE 3 Ifaspecific boundary is identified as a test condition, then the corresponding test coverage items
could be the boundary itself and immediately either side of the boundary.

A test case is a set of preconditions, inputs (including actions, where applicable), and expected results,
developed to determine whether or not the covered part of the test item has been implemented correctly.

Specific (normative) guidance on how to implement the other activities in the test design &
implementation process of ISO/IEC/IEEE 29119-2, including activities TD1 (Identify Feature Sets), TD5
(Assemble Test Sets), and TD6 (Derive Test Procedures), is not included in Clauses 5 or 6 of this part of
ISO/IEC/IEEE 29119 because the process is the same for all techniques.

vi © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Test Design &
Implementation Process

Test Design

Specification

Identify Feature :‘>
‘_» Feature S
Sets ; H

(TD1)

Derive Test | Test Conditions

Conditions ﬁ Test Case
(TD2) 4 Test Specification
Derive Coverage Items
Test
Coverage ﬁ
Items H
(TD3) .
Derive Test Cases
Test Cases ﬁ Test Procedure
(TD4) 3 Specification
Test
Assemble Sets
Test Sets ﬁ
(TD5)
) Test Procedures
Derive Test | g et Scripts
Inputs to activities in this process Procedures _>‘
tnay;':g l;):i;;.s, The process is shown as purely (TD6)
Test plan 7 sequential, but in practice it may be
pran; carried out iteratively, with some
Test strategy;

activities being revisited.

Test items; and See ISO/IEC/IEEE 29119-2 for details.

Test design techniques.

Figure 1 — ISO/IEC/IEEE 29119-2 Test Design and Implementation Process

ISO/IEC/TR 19759 (SWEBOK) defines two types of requirements: functional requirements and quality
requirements. ISO/IEC 25010 defines eight quality characteristics (including functionality) that can be
used to identify types of testing that may be applicable for testing a specific test item. Annex A provides
example mappings of test design techniques that apply to testing quality characteristics defined in
ISO/IEC 25010.

Experience-based testing practices like exploratory testing and other test practices such as model-based
testing are not defined in this part of ISO/IEC/IEEE 29119 because this part of ISO/IEC/IEEE 29119 only
describes techniques for designing test cases. Test practices such as exploratory testing are described
in ISO/IEC/IEEE 29119-1.

Templates and examples of test documentation that are produced during the testing process are defined
in ISO/IEC/IEEE 29119-3 Test Documentation. The test techniques in this part of ISO/IEC/IEEE 29119
do not describe how test cases should be documented (e.g. they do not include information or guidance
on assigning unique identifiers, test case descriptions, priorities, traceability, or pre-conditions).
Information on how to document test cases can be found in ISO/IEC/IEEE 29119-3.

This part of ISO/IEC/IEEE 29119 aims to provide stakeholders with the ability to design test cases for
the testing of software in any organization.

© ISO/IEC 2015 - All rights reserved vii
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

INTERNATIONAL STANDARD ISO/IEC/IEEE 29119-4:2015(E)

Software and systems engineering — Software testing —

Part 4:
Test techniques

1 Scope

This part of ISO/IEC/IEEE 29119 defines test design techniques that can be used during the test design
and implementation process that is defined in ISO/IEC/IEEE 29119-2.

This part of ISO/IEC/IEEE 29119 is intended for, but not limited to, testers, test managers, and
developers, particularly those responsible for managing and implementing software testing.

2 Conformance

2.1 Intended Usage

The normative requirements in this part of ISO/IEC/IEEE 29119 are contained in Clauses 5 and 6.
It is recognised that particular projects or organizations may not need to use all of the techniques
defined by this standard. Therefore, implementation of this standard typically involves selecting
a set of techniques suitable for the project or organization. There are two ways that an organization
or individual can claim conformance to the provisions of this standard - full conformance or tailored
conformance. The organization or individual shall assert whether full or tailored conformance to this
standard is claimed.

2.2 Full Conformance

Full conformance is achieved by demonstrating that all of the requirements (i.e. ‘shall’ statements) of the
chosen (non-empty) set of techniques in Clause 5 and/or the corresponding test coverage measurement
approaches in Clause 6 have been satisfied.

EXAMPLE An organization could choose to conform only to one technique, such as boundary value analysis.
In this scenario, the organization would only be required to provide evidence that they have met the requirements
of that one technique in order to claim conformance to this part of ISO/IEC/IEEE 29119.

2.3 Tailored Conformance

Tailored conformance is achieved by demonstrating that the chosen subset of requirements from the
chosen (non-empty) set of techniques and/or corresponding test coverage measurement approaches
have been satisfied. Where tailoring occurs, justification shall be provided (either directly or by
reference) whenever the normative requirements of a technique defined in Clause 5 or measure
defined in Clause 6 are not followed completely. All tailoring decisions shall be recorded with their
rationale, including the consideration of any applicable risks. Tailoring shall be agreed by the relevant
stakeholders.

3 Normative References

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

© ISO/IEC 2015 - All rights reserved 1
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

ISO/IEC/IEEE 29119-1, Software and systems engineering — Software testing — Part 1: Concepts and
definitions

ISO/IEC/IEEE 29119-2, Software and systems engineering — Software testing — Part 2: Test processes

ISO/IEC/IEEE 29119-3, Software and systems engineering — Software testing — Part 3: Test
documentation

NOTE Other International Standards useful for the implementation and interpretation of this part of
ISO/IEC/IEEE 29119 are listed in the bibliography.

4 Terms and Definitions

For the purposes of this document, the terms and definitions given in ISO/IEC/IEEE 24765 and the
following apply.

NOTE Use of the terminology in this part of ISO/IEC/IEEE 29119 is for ease of reference and is not
mandatory for conformance with the standard. The following terms and definitions are provided to assist with
the understanding and readability of this part of ISO/IEC/IEEE 29119. Only terms critical to the understanding
of this part of ISO/IEC/IEEE 29119 are included. This clause is not intended to provide a complete list of testing
terms. The systems and software engineering vocabulary ISO/IEC/IEEE 24765 can be referenced for terms not
defined in this clause.

4.1
Backus-Naur Form
formal meta-language used for defining the syntax of a language in a textual format

4.2
base choice
see base value

4.3

base value

input parameter value used in ‘base choice testing’ that is normally selected based on being a
representative or typical value for the parameter. Also called base choice

4.4
c-use
see computation data use

4.5
computation data use
use of the value of a variable in any type of statement

4.6
condition
Boolean expression containing no Boolean operators

EXAMPLE “A < B” is a condition but “A and B” is not.

4.7
control flow
sequence in which operations are performed during the execution of a test item

4.8
control flow sub-path
sequence of executable statements within a test item

4.9
data definition
statement where a variable is assigned a value. Also called variable definition

2 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

4.10

data definition c-use pair

data definition and subsequent computation data use, where the data use uses the value defined in the
data definition

411

data definition p-use pair

data definition and subsequent predicate data use, where the data use uses the value defined in the
data definition

412
data definition-use pair
data definition and subsequent data use, where the data use uses the value defined in the data definition

4.13
data use
executable statement where the value of a variable is accessed

4.14
decision outcome
result of a decision (which therefore determines the control flow alternative taken)

4.15

decision rule

combination of conditions (also known as causes) and actions (also known as effects) that produce a
specific outcome in decision table testing and cause-effect graphing

4.16

definition-use pair

data definition and subsequent predicate or computational data use, where the data use uses the value
defined in the data definition

4.17

definition-use path

control flow sub-path from a variable definition to a predicate-use (p-use) or computational-use (c-use)
of that variable

4.18
entry point
point in a test item at which execution of the test item can begin

Note 1 to entry: An entry point is an executable statement within a test item that may be selected by an external
process as the starting point for one or more paths through the test item. It is most commonly the first executable
statement within the test item.

419

executable statement

statement which, when compiled, is translated into object code, which will be executed procedurally
when the test item is running and may perform an action on program data

4.20
exit point
last executable statement within a test item

Note 1 to entry: An exit point is a terminal point of a path through a test item, being an executable statement
within the test item which either terminates the test item, or returns control to an external process. This is most
commonly the last executable statement within the test item.

4.21
p-use
see predicate data use

© ISO/IEC 2015 - All rights reserved 3
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

4.22

P-V pair

combination of a test item parameter with a value assigned to that parameter, used as a test condition
and coverage item in combinatorial test design techniques

4.23
path
sequence of executable statements of a test item

4.24
predicate
logical expression which evaluates to TRUE or FALSE, normally to direct the execution path in code

4.25
predicate data use
data use associated with the decision outcome of the predicate portion of a decision statement

4.26
sub-path
path that is part of a larger path

4.27
test model
representation of a test item that is used during the test case design process

4.28
variable definition
see data definition

5 TestDesign Techniques

5.1 Overview

ISO/IEC/IEEE 29119-4 defines test design techniques for specification-based testing (5.2), structure-
based testing (5.3) and experience-based testing (5.4). In specification-based testing, the test basis
(e.g. requirements, specifications, models or user needs) is used as the main source of information
to design test cases. In structure-based testing, the structure of the test item (e.g. source code or the
structure of a model) is used as the primary source of information to design test cases. In experience-
based testing, the knowledge and experience of the tester is used as the primary source of information
during test case design. For specification-based testing, structure-based testing and experience-based
testing, the test basis is used to generate the expected results. These classes of test design techniques
are complementary and their combined application typically results in more effective testing.

Although the techniques presented in ISO/IEC/IEEE 29119-4 are classified as structure-based,
specification-based or experience-based, in practice some of them can be used interchangeably (e.g. branch
testing could be used to design test cases for testing logical paths through the graphical user interface
of an Internet-based system). This is demonstrated in Annex E. In addition, although each technique is
defined independently of all others, in practice they can be used in combination with other techniques.

EXAMPLE The test coverage items derived by applying equivalence partitioning could be used to populate
input parameters of test cases derived using scenario testing.

ISO/IEC/IEEE 29119-4 uses the terms specification-based testing and structure-based testing; these
categories of techniques are also known as “black-box testing” and “white-box testing” (or “clear-box
testing”) respectively. The terms “black-box” and “white-box” refer to the visibility of the internal
structure of the test item. In black-box testing the internal structure of the test item is not visible (hence
the black box), whereas for white-box testing the internal structure of the test item is visible. When a
technique is applied while utilising a combination of knowledge from the test item’s specification and
structure, this is often called “grey-box testing”.

4 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

ISO/IEC/IEEE 29119-4 defines how the generic test design and implementation process steps TD2
(derive test conditions), TD3 (derive test coverage items), and TD4 (derive test cases) from ISO/IEC/
IEEE 29119-2 (see Introduction) shall be used by each technique. It does not provide context-specific
definitions of the techniques that describe how each technique should be used in all situations. Users of
ISO/IEC/IEEE 29119-4 may refer to Annex B, Annex C, Annex D and Annex E for detailed examples that
demonstrate how to apply the techniques.

The techniques that are defined in ISO/IEC/IEEE 29119-4 are shown in Figure 2. This set of techniques
is not exhaustive. There are techniques that are used by testing practitioners or researchers that are
not included in ISO/IEC/IEEE 29119-4.

© ISO/IEC 2015 - All rights reserved 5
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Test Design Techniques Presented
in ISO/IEC/IEEE 29119-4

l]
Specification-Based Structure-Based Experience-Based
Techniques Techniques Techniques
(clause 5.2) (cla_use 5.3) (cla_use 5.4)
Equivalence Partitioning | Statement Testing Error Guessing
(clause 5.2.1) (clause 5.3.1) (clause 5.4.1)
Classification Tree Method | Branch Testing
(clause 5.2.2) (clause 5.3.2)

Boundary Value Analysis Decision Testing

(clause 5.2.3) (clause 5.3.3)
Syntax Testing || Branch Condition Testing
(clause 5.2.4) (clause 5.3.4)
Combinatorial Branch Condition
=] TestDesign Techniques P Combination Testing
(clause 5.2.5) (clause 5.3.5)
All Combinations Testing Modified Condition pec151on
(clause 5.2.5.3) - Coverage Testing
T (clause 5.3.6)
Pair-Wise Testing | Data Flow Testing
(clause 5.2.5.4) (clause 5.3.7)
Each Choice Testing All-Definitions Testing
(clause 5.2.5.5) (clause 5.3.7.2)
Base Choice Testing All-C-Uses Testing
(clause 5.2.5.6) (clause 5.3.7.3)
|| Decision Table Testing All-P-Uses Testing
(clause 5.2.6) (clause 5.3.7.4)
|| Cause-Effect Graphing All-Uses Testing
(clause 5.2.7) (clause 5.3.7.5)
State Transition Testing All-DU-Paths Testing
(clause 5.2.8) (clause 5.3.7.6)

Scenario Testing
(clause 5.2.9)

Random Testing
(clause 5.2.10)

Figure 2 — The set of test design techniques presented in ISO/IEC/IEEE 29119-4

Of the six activities in the test design and implementation process (see Figure 1), test design techniques
provide unique and specific guidance on the derivation of test conditions (TD2), test coverage items
(TD3) and test cases (TD4). Therefore, each technique is defined in terms of these three activities.

There are varying levels of granularity within steps TD2 (derive test conditions), TD3 (derive test
coverage items) and TD4 (derive test cases). Within each technique, the term “model” is used to

6 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

describe the concept of preparing a logical representation of the test item for the purposes of deriving
test conditions in step TD2 (e.g. a control flow model is required for deriving test conditions for all
structural techniques). Some situations may require the entire model to be a test condition, whereas in
other situations, one part of the model may be a test condition.

EXAMPLE1 In state transition testing, if there is a requirement to cover all states then the entire state model
could be the test condition. Alternatively, if there is a requirement to cover specific transitions between states,
then each transition could be a test condition.

In addition, since some techniques share underlying concepts, their definitions contain similar text.
EXAMPLE 2 Both equivalence partitioning and boundary value analysis are based on equivalence classes.

In the test case design step (TD4) of each technique, test cases that are created may be “valid” (i.e. they
contain input values that the test item should accept as correct) or “invalid” (i.e. they contain at least
one input value that the test item should reject as incorrect, ideally with an appropriate error message).
In some techniques, such as equivalence partitioning and boundary value analysis, invalid test cases
are usually derived using the “one-to-one” approach as it avoids fault masking by ensuring that each
test case only includes one invalid input value, while valid test cases are typically derived using the
“minimized” approach, as this reduces the number of test cases required to cover valid test coverage
items (see 5.2.1.3 and 5.2.3.3).

NOTE Invalid cases are also known as “negative test cases”.

Although the techniques defined in ISO/IEC/IEEE 29119-4 are each described in a separate clause (as if
they were mutually exclusive), in practice they could be applied in a blended way.

EXAMPLE 3 Boundary value analysis could be used to select test input values, after which pair-wise testing
could be used to design test cases from the test input values. Equivalence partitioning could be used to select
the classifications and classes for the classification tree method and then each choice testing could be used to
construct test cases from the classes.

The techniques presented in ISO/IEC/IEEE 29119-4 could also be used in conjunction with the test
types that are presented in Annex A. For example, equivalence partitioning could be used to identify
user groups (test conditions) and representative users (test coverage items) from those groups in test
cases that are to be tested during usability testing.

The normative definitions of the techniques are provided in Clause 5. The corresponding normative
coverage measures for each technique are presented in Clause 6. This is supported by informative
examples of each technique in Annexes B, C, D and E. Although the examples of each technique
demonstrate manual application of the technique, in practice, automation can be used to support some
types of test design and execution (e.g. statement coverage analyzers can be used to support structure-
based testing). Annex A provides examples of how the test design techniques defined in this standard
can be applied to testing the quality characteristics that are defined in ISO/IEC 25010.

5.2 Specification-Based Test Design Techniques
5.2.1 Equivalence Partitioning

5.2.1.1 Derive Test Conditions (TD2)

Equivalence partitioning (BS 7925-2:1998; Myers 1979) uses a model of the test item that partitions the
inputs and outputs of the test item into equivalence partitions (also called “partitions” or “equivalence
classes”), where each equivalence partition shall be defined as a test condition. These equivalence
partitions shall be derived from the test basis, where each partition is chosen such that all values
within the equivalence partition can reasonably be expected to be treated similarly (i.e. they may be

© ISO/IEC 2015 - All rights reserved 7
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

considered “equivalent”) by the test item. Equivalence partitions may be derived for both valid and
invalid inputs and outputs.

EXAMPLE For a test item expecting lowercase alphabetical characters as (valid) inputs, invalid input
equivalence partitions that could be derived include equivalence partitions containing integers, reals, uppercase
alphabetical characters, symbols and control characters, depending on the level of rigour required during testing.

NOTE1 Foroutputequivalence partitions, corresponding input partitions are derived based on the processing
described in the test item’s specification. Test inputs are then selected from the input partitions.

NOTE 2 Invalid output equivalence partitions typically correspond to any outputs that have not been
explicitly specified. As these are not specified their identification often results in equivalence partitions based
on the subjectivity of the individual tester. This subjective form of test design may also occur when applying
experience-based techniques like error guessing.

NOTE 3 Domain analysis (Beizer 1995) is often classified as a combination of equivalence partitioning and
boundary value analysis.

5.2.1.2 Derive Test Coverage Items (TD3)

Each equivalence partition shall be identified as a test coverage item (i.e. for equivalence partitioning
the test conditions and test coverage items are the same equivalence partitions).

5.2.1.3 Derive Test Cases (TD4)

Test cases shall be derived to exercise the test coverage items (i.e. the equivalence partitions). The
following steps shall be used during test case derivation:

a) Decide on an approach for selecting combinations of test coverage items to be exercised by test
cases, where two common approaches are (BS 7925-2:1998; Myers 1979):

1) one-to-one, in which each test case is derived to cover a specific equivalence partition;

2) minimized, in which equivalence partitions are covered by test cases such that the minimum
number of test cases derived covers all equivalence partitions at least once.

NOTE Other approaches to selecting combinations of test coverage items to be exercised by test cases
are described in 5.2.5 (Combinatorial Test Design Techniques).

b) Select test coverage item(s) for inclusion in the current test case based on the approach chosen in
step a);

c) Identify input values to exercise the test coverage items to be covered by the test case and arbitrary
valid values for any other input variables required by the test case;

d) Determine the expected result of the test case by applying the input(s) to the test basis;

e) Repeat steps b) to d) until the required level of test coverage is achieved.
5.2.2 C(lassification Tree Method

5.2.2.1 Derive Test Conditions (TD2)

The classification tree method (Grochtmann and Grimm 1993) uses a model of the test item that
partitions the inputs of the test item and represents them graphically in the form of a tree called
a classification tree. The test item’s inputs are partitioned into “classifications”, where each
classification consists of a disjoint (non-overlapping) set of “classes” and often sub-classes, and the
set of classifications is complete (all classifications of all inputs relevant to the test item domain being
modelled have been identified and included). Each classification shall be a test condition. “Classes” that
result from decomposing the classifications may be partitioned further into “sub-classes” depending
on the level of rigour required in the testing. Classifications and classes may be derived for both valid

8 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

and invalid input data, depending on the level of test coverage required. The hierarchical relationships
between classifications, classes and sub-classes are modelled as a tree, in which the input domain of the
test item is placed as the root node, the classifications as branch nodes, and the classes or sub-classes
as leaf nodes.

NOTE The process of partitioning in the classification tree method is similar to equivalence partitioning.
The key difference is that in the classification tree method, the partitions (which are classifications and classes)
must be completely disjoint, whereas in equivalence partitioning, they could overlap depending on how the
technique was applied. In addition, the classification tree method also includes the design of a classification tree,
which provides a visual representation of the test conditions.

5.2.2.2 Derive Test Coverage Items (TD3)

Test coverage items shall be derived by combining classes using a chosen combination approach.
EXAMPLE Two example approaches for combining classes into test coverage items are:

— minimized, in which classes are included in test coverage items such that the minimum number of test
coverage items are derived to cover all classes at least once;

— maximized, in which classes are included in test coverage items such that each possible combination of
classes is covered by at least one test coverage item.

NOTE1 Other approaches to selecting combinations of test coverage items are described in 5.2.5
(Combinatorial Test Design Techniques).

NOTE 2 The test coverage items are often illustrated in a combination table (see Figure B.5 in B.2.2.5).

NOTE 3 The original publication of the classification tree method (Grochtmann and Grimm 1993) used the
terms “minimal” and “maximal” instead of “minimized” and “maximized”.

5.2.2.3 Derive Test Cases (TD4)

Test cases shall be derived to exercise the test coverage items. The following steps shall be followed
during test case derivation:

a) Based on the combinations of classes created in step TD3, select one combination for inclusion in
the current test case that has not already been covered by a test case;

b) Identify input values for any classes that do not already have an assigned value;
¢) Determine the expected result of the test case by applying the input(s) to the test basis;

d) Repeatsteps a) to c) until the required level of test coverage is achieved.
5.2.3 Boundary Value Analysis

5.2.3.1 Derive Test Conditions (TD2)

Boundary value analysis (BS 7925-2:1998; Myers 1979) uses a model of the test item that partitions
the inputs and outputs of the test item into a number of ordered sets and subsets (partitions and sub-
partitions) with identifiable boundaries, where each boundary is a test condition. The boundaries shall
be derived from the test basis.

EXAMPLE For a partition defined as integers from 1 to 10 inclusive, there are two boundaries, where the
lower boundary is 1 and the upper boundary is 10, and these are the test conditions.

NOTE For output boundaries, corresponding input partitions are derived based on the processing described
in the test item’s specification. Test inputs are then selected from the input partitions.

© ISO/IEC 2015 - All rights reserved 9
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.2.3.2 Derive Test Coverage Items (TD3)

One of the following two options for the derivation of test coverage items shall be applied:
— two-value boundary testing; or

— three-value boundary testing.

For two-value boundary testing, two test coverage items shall be derived for each boundary (test
condition) corresponding to values on the boundary and an incremental distance outside the boundary
of the equivalence partition. This incremental distance shall be defined as the smallest significant value
for the data type under consideration.

For three-value boundary testing, three test coverage items shall be derived for each boundary (test
condition) corresponding to values on the boundary and an incremental distance each side of the
boundary of the equivalence partition. This incremental distance shall be defined as the smallest
significant value for the data type under consideration.

NOTE1 Some partitions could have only a single boundary identified in the test basis. For example, the
numerical partition “age = 70 years” has a lower boundary but not an obvious upper boundary. In some cases a
boundary value imposed by the actual implementation can be used as a boundary value, such as the largest value
that is accepted by the input field (such decisions should be documented; for example, in the Test Specification
documentation).

NOTE 2 Two-value boundary value testing is typically adequate in most situations; however, three-value
boundary testing could be required for certain circumstances (e.g. for rigorous testing to check that no errors
were made in determining the boundaries of variables in the test item by both testers and developers).

NOTE 3 In both two- and three-value boundary value testing, contiguous partitions (partitions that share a

boundary) will result in duplicate test coverage items, in which case it is typical practice to only exercise these
duplicated values once. For an example of duplicate boundaries, see B.2.3.4.3.

5.2.3.3 Derive Test Cases (TD4)

Test cases shall be derived to exercise the test coverage items. The following steps shall be used during
test case derivation:

a) Decide on an approach for selecting combinations of test coverage items to be exercised by test
cases, where two common approaches are (BS 7925-2:1998; Myers 1979):

1) one-to-one, in which each test case is derived to exercise a specific boundary value;

2) minimized, in which boundary values are included in test cases such that the minimum number
of test cases are derived to cover all boundary values at least once.

NOTE1 Inminimized boundary value analysis, each test case can cover multiple test coverage items.

NOTE 2 Other approaches to selecting combinations of test coverage items to be exercised by test cases
are described in 5.2.5 (Combinatorial Test Design Techniques).

b) Select test coverage item(s) for inclusion in the current test case based on the approach chosen in
step a);

c) Identify arbitrary valid values for any other input variables required by the test case that were not
already selected in step b);

d) Determine the expected result of the test case by applying the input(s) to the test basis;

e) Repeatstepsb) to d) until the required level of test coverage is achieved.

10 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.2.4 Syntax Testing

5.2.4.1 Derive Test Conditions (TD2)

Syntax testing (Beizer 1995; Burnstein 2003) uses a formal model of the inputs to a test item as the
basis for test design. This syntax model is represented as a number of rules, where each rule defines
the format of an input parameter in terms of “sequences of”, “iterations of”, or “selections between”
elements in the syntax. The syntax may be represented in a textual or diagrammatic format. The test
condition in syntax testing shall be the whole or partial model of the inputs to the test item.

EXAMPLE1 Backus-Naur Form is a formal meta-language that can be used to define the syntax for a test item
in a textual format.

EXAMPLE 2 An abstract syntax tree can be used to represent formal syntax diagrammatically.

5.2.4.2 Derive Test Coverage Items (TD3)

In syntax testing the test coverage items are derived based on two goals: positive testing, in which test
coverage items are derived to cover the valid syntax in various ways, and negative testing, in which
test coverage items are derived to deliberately violate the rules of the syntax. Test coverage items
for positive testing shall be “options” of the defined syntax, whereas test coverage items for negative
testing shall be “mutations” of the defined syntax.

The following guidelines may be used to derive “options” (although alternative guidelines may be used
where appropriate):

— whenever selection is mandated by the syntax, an “option” is derived for each alternative provided
for that selection;

EXAMPLE 1 For the input parameter “colour = Blue | Red | Green” (where | represents the “OR” Boolean
operator), three options “Blue”, “Red” and “Green” will be derived as test coverage items.

— whenever an iteration is mandated by the syntax, at least two “options” are derived for the iteration;
one with the minimum number of repetitions and the other with more than the minimum number
of repetitions;

EXAMPLE 2 For the input parameter “letter = [A-Z | a - z]*” (where “+” represents “one or more”), two options,
“one letter” and “more than one letter”, will be derived as test coverage items.

— whenever iteration is mandated with a maximum number of repetitions, at least two “options” are
derived for the iteration; one with the maximum number of repetitions and the other with more
than the maximum number of repetitions.

EXAMPLE 3 For the input parameter “letter = [A - Z | a - z]100” (where “100” represents the fact that a letter
can be chosen up to 100 times), two options “100 letters” and “more than 100 letters” will be derived as test
coverage items.

The following guideline may be used to derive “mutations” (although alternative guidelines may be
used where appropriate):

— for any input, the defined syntax may be mutated to derive invalid inputs (“mutations”).
EXAMPLE 4 For the input parameter “colour = Blue | Red | Green”, one “mutation” could be to introduce an

invalid value for the parameter as the test coverage item, such as selecting the value “Yellow”, which does not
appear in the input parameter list. Other example mutations are provided in B.2.4.5.

© ISO/IEC 2015 - All rights reserved 11
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.2.4.3 Derive Test Cases (TD4)

Test cases for syntax testing shall be derived to cover the chosen options and mutations. The following
steps shall be used during test case derivation:

a) Decide on an approach for selecting combinations of test coverage items to be exercised by test
cases, where two common approaches are:

1) one-to-one, in which each test case is derived to exercise a specific option, iteration and/or
mutation; or

2) minimized, in which options, iterations and/or mutations are included in test cases such that
the minimum number of test cases are derived to cover all options, iterations and/or mutations
atleast once.

NOTE Other approaches to selecting combinations of test coverage items to be exercised by test cases
are described in 5.2.5 (Combinatorial Test Design Techniques).

b) Select test coverage item(s) for inclusion in the current test case;

c) Identify input values to exercise the test coverage item(s) to be covered by the test case and
arbitrary valid values for any other input variables required by the test case;

d) Determine the expected result of the test case by applying the input(s) to the test basis;

e) Repeatstepsb) to d) until all derived options, iterations and/or mutations are exercised.
5.2.5 Combinatorial Test Design Techniques

5.2.5.1 Overview

Combinatorial test design techniques are used to systematically derive a meaningful and manageable
subset of test cases that cover the test conditions and test coverage items that are derivable during
testing. The combinations of interest are defined in terms of test item parameters and the values
these parameters can take. Where numerous parameters (each with numerous discrete values) must
interact, this technique enables a significant reduction in the number of test cases required without
compromising functional coverage.

5.2.5.2 Derive Test Conditions (TD2)

The test item parameters represent particular aspects of the test item that are relevant to the testing,
and often correspond to the input parameters to the test item, but other aspects may also be used.

EXAMPLE 1 In configuration testing, the parameters could be various environment factors, such as operating
system and browser.

Each test item parameter can take on various values. For use in this technique the set of values needs
to be finite and manageable. Some test item parameters may be naturally constrained to only take on a
small set of possible values while other test item parameters may be far less constrained.

EXAMPLE 2 Atestitem parameter thatis naturally constrained to a small number of values is a “day_of_week”

parameter that can only take on seven specific values “[Monday | Tuesday | Wednesday | Thursday | Friday |
Saturday | Sunday]”.

EXAMPLE 3 A test item parameter that is far less constrained is a parameter consisting of any Real number,
which exists along a potentially infinite number line.

For unconstrained test item parameters, it may first be necessary to apply other test design techniques,
such as equivalence partitioning or boundary value analysis, to reduce a large set of possible values for
a parameter to a manageable subset.

12 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

The test conditions for combinatorial testing are the same for all the combinatorial test design
techniques; each test condition shall be a chosen test item parameter (P) taking on a specific value (V),
resulting in a P-V pair.

5.2.5.3 All Combinations Testing

5.2.5.3.1 Derive Test Coverage Items (TD3)

In ‘all combinations’ testing (Grindal, Offutt and Andler 2005) the test coverage items shall be members of
the set of all unique combinations of P-V pairs, such that each parameter is included at least once in the set.

5.2.5.3.2 Derive Test Cases (TD4)

Test cases shall be derived in which each test case exercises one unique combination of P-V pairs. The
following steps shall be used during test case derivation:

a) Selecttest coverage item(s) for inclusion in the current test case that have not already been covered
by a test case;

b) Determine the expected result of the test case by applying the input(s) to the test basis;
c) Repeatsteps a) and b) until the required level of test coverage is achieved.

NOTE The minimum number of test cases required to achieve 100% all combinations testing coverage
corresponds to the product of the number of P-V pairs for each test item parameter.

5.2.5.4 Pair-wise Testing

5.2.5.4.1 Derive Test Coverage Items (TD3)

In pair-wise testing (Grindal, Offutt and Andler 2005), the test coverage items shall be unique pairs
of P-V pairs, where each P-V pair within the pair is for a different test item parameter. Instead of all
possible combinations of the parameters (as was required for all combinations testing), this technique
covers all possible pairs of the selected values within the total set, thereby efficiently exercising the test
item with fewer test cases. Pair-wise testing is also known as “all pairs” testing.

5.2.5.4.2 Derive Test Cases (TD4)

Having first identified the P-V pairs, test cases shall be derived to exercise pairs of P-V pairs, where each
test case exercises one or more unique pairs. The following steps shall be used during test case derivation:

a) Selecttest coverage item(s) for inclusion in the current test case, where each pair of P-V pairs covers
a different pair of parameter values that have not yet been included in a test case;

b) Identify arbitrary valid values for any other parameters present in the test case;
c¢) Determine the expected result of the test case by applying the input(s) to the test basis;
d) Repeat steps a) to c) until all unique pairs of P-V pairs have been exercised.

The minimum number of test cases required to achieve 100% pair-wise testing is not easily calculated.
A near-optimal set may be considered acceptable and may be calculated using one of the following
three options:

— manually determine a near-optimal set using an algorithm;

— use an automated tool (implementing an algorithm) to determine a near-optimal set; or

— use orthogonal arrays (Mandl 1985) to determine a near-optimal set.

© ISO/IEC 2015 - All rights reserved 13
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.2.5.5 Each Choice Testing

5.2.5.5.1 Derive Test Coverage Items (TD3)

In each choice (or 1-wise) testing (Grindal, Offutt and Andler 2005), the test coverage items shall be
members of the set of P-V pairs such that each parameter value is included at least once in the set.

5.2.5.5.2 Derive Test Cases (TD4)

Test cases shall be derived to exercise P-V pairs, where each test case exercises one or more P-V pairs
that have not been previously included in a test case. The following steps shall be used during test
case derivation:

a) Select test coverage item(s) for inclusion in the current test case, where at least one selected test
coverage item has not been included in a prior test case;

b) Identify arbitrary valid values for any other parameters present in the test case;
c) Determine the expected result of the test case by applying the input(s) to the test basis;
d) Repeat steps a) to c) until the required level of test coverage is achieved.

The minimum number of test cases required to achieve 100% each choice testing corresponds to the
maximum number of values any one of the test item parameters can take.

5.2.5.6 Base Choice Testing

5.2.5.6.1 Derive Test Coverage Items (TD3)

In base choice testing (Grindal, Offutt and Andler 2005), the test coverage items shall be sets of P-V
pairs for each of the input parameters, where all parameters except one are set to their “base” value and
the final parameter is set to one of its other valid values.

NOTE There are a number of approaches for choosing the base values for each parameter. For example, they can

be chosen from the operational profile, from the typical path in scenario testing, from the test coverage items that
are derived during equivalence partitioning or from the default (most frequently used) values for the parameter.

5.2.5.6.2 Derive Test Cases (TD4)

Having first identified the P-V pairs, base choices for each of the parameters shall be chosen. Test cases
shall be derived by setting all but one parameter to its base choice and then setting the final parameter
to a valid value until the required level of test coverage of PV-pairs is achieved. The following steps shall
be used during test case derivation:

a) Derive the base-choice test case by setting each parameter to its “base” value;

b) Create a new test case by setting one parameter to a valid (non-base choice) value while keeping
the remaining set of parameters to their base choice values;

c) Determine the expected result of the new test case by applying the inputs to the test basis;

d) Repeatsteps b) and c) until the required level of test coverage is achieved.

14 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.2.6 Decision Table Testing

5.2.6.1 Derive Test Conditions (TD2)

Decision table testing (BS 7925-2:1998, Myers 1979) uses a model of the logical relationships (decision
rules) between conditions (causes) and actions (effects) for the test item in the form of a decision
table, where:

— each Boolean condition defines a pair of input equivalence partitions for the test item, one
corresponding to the “true” case, and one to the “false” case;

— each action is an expected outcome or a combination of outcomes for the test item expressed as a
Boolean;

— asetof decision rules defines the required relationships between conditions and actions.
The test conditions shall be the conditions and actions.

NOTE If conditions consist of multiple values rather than simple Booleans, this results in an “extended
entry” decision table, the testing of which can be handled by equivalence partitioning.

5.2.6.2 Derive Test Coverage Items (TD3)

In decision table testing, each decision rule, which defines the relationship between a unique
combination of the test item’s conditions and actions, is a test coverage item.

5.2.6.3 Derive Test Cases (TD4)

Test cases shall be derived to exercise the decision rules (test coverage items), where each test case
defines the relationship between the inputs and outputs, and each decision rule corresponds to a unique
combination of Boolean conditions. The following steps shall be used during test case derivation:

a) Select test coverage item(s) from the decision table for implementation as a test case;

b) Identify input values to satisfy the input condition(s) of the decision rule(s) to be covered by the
test case and arbitrary valid values for any other input variables required to execute the test case;

c¢) Determine the expected result of the test case by applying the input(s) to the decision table;
d) Repeatsteps a) to c) until the required level of test coverage is achieved.
NOTE If the decision table contains dependent input conditions then this could result in infeasible

combinations (e.g. “age less than 18” and “age greater than 65” both set to true). In this situation such infeasible
decision rules should be identified and documented and are not used to derive test cases.

5.2.7 Cause-Effect Graphing

5.2.7.1 Derive Test Conditions (TD2)

Cause-effect graphing (BS 7925-2:1998, Myers 1979, Nursimulu and Probert 1995) uses a model of the
logical relationships (decision rules) between causes (e.g. inputs) and effects (e.g. outputs) for the test
item in the form of a cause-effect graph, where:

— each Boolean cause defines a pair of input equivalence partitions for the testitem, one corresponding
to the “true” case, and one to the “false” case; and

— each effect defines an expected output condition or combination of output conditions for the test
item expressed as a Boolean.

The test conditions shall be the causes and effects.

© ISO/IEC 2015 - All rights reserved 15
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

The cause-effect graph models logical relationships between causes and effects as a Boolean logic
network weighted by Boolean operators, and can optionally model syntactic and semantic constraints
over relationships between causes and relationships between effects (see Figures B.11 and B.12 in
Annex B.2.7.4).

5.2.7.2 Derive Test Coverage Items (TD3)

In cause-effect graphing, each decision rule, which defines the relationship between a unique
combination of the test item’s causes and effects, is a test coverage item.

5.2.7.3 Derive Test Cases (TD4)

Test cases shall be derived to exercise the test coverage items. A corresponding decision table may be
produced from the cause-effect graph and used to derive the test cases. The following steps shall be
used during test case derivation:

a) Select test coverage item(s) to be implemented in the current test case;

b) Identify input values to exercise the test coverage item(s) to be covered by the test case and
arbitrary valid values for any other input variables required to execute the test case;

c) Determine the expected result of the test case by applying the input(s) to the cause-effect graph
and/or decision table;

d) Repeat steps a) to c) until the required level of test coverage is achieved.
5.2.8 State Transition Testing

5.2.8.1 Derive Test Conditions (TD2)

State transition testing (BS 7925-2:1998, Copeland 2004) uses a model of the states the test item may
occupy, the transitions between states, the events which cause transitions and the actions that may
result from the transitions. The states of the model shall be discrete, identifiable and finite in number.
An individual transition may be constrained by an event guard, which defines a set of conditions that
must be true when the event occurs, in order for the transition to occur. In state transition testing, the
test conditions may be all states of the state model, all transitions of the state model or the entire state
model, depending on the coverage requirements of testing. The model may be represented as a state
transition diagram or a state table (although other representations may also be used).

5.2.8.2 Derive Test Coverage Items (TD3)

In state transition testing, test coverage items will change depending on the chosen test completion
criterion and test design approach. Possible test completion criteria include but are not limited to
the following:

— states, in which test coverage items shall be derived to enable all states in the state model to be
“visited”;
— single transitions (0-switch coverage), in which test coverage items shall be derived to cover valid

single transitions in the state model;

— all transitions, in which test coverage items shall be derived to cover both valid transitions in the
state model and “invalid” transitions (transitions from states initiated by events in the state model
for which no valid transition is specified);

— multiple transitions (N-switch coverage), in which test coverage items shall be derived to cover
valid sequences of N+1 transitions in the state model.

NOTE “1-switch” coverage is a popular variant of “N-switch” coverage that requires pairs of transitions to
be exercised.

16 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.2.8.3 Derive Test Cases (TD4)

Test cases for state transition testing shall be derived to exercise the test coverage items. The following
steps shall be used during test case derivation:

a) Select test coverage item(s) for inclusion in the current test case;
b) Identify input values to exercise the test coverage item(s) to be covered by the test case;

c¢) Determine the expected result of the test case by applying the input(s) to the test basis (the expected
result may be defined in terms of outputs and the states visited as described in the state model);

d) Repeat steps a) to c) until the required level of test coverage is achieved.
5.2.9 Scenario Testing

5.2.9.1 Derive Test Conditions (TD2)

Scenario testing (Desikan and Ramesh 2007) uses a model of the sequences of interactions between
the test item and other systems (in this context users are often considered to be other systems) for the
purpose of testing usage flows involving the test item. Test conditions shall either be one sequence of
interactions (i.e. one scenario) or all sequences of interactions (i.e. all scenarios).

In scenario testing, this step shall include identification of:

— the “main” scenario which is the typical sequence of actions that are expected of the test item or an
arbitrary choice when no typical sequence of actions is known; and

— ‘“alternative” scenarios that represent alternative (non-main) scenarios that may be taken through
the test item.

NOTE 1 Alternative scenarios can include abnormal use, extreme or stress conditions and exceptions.

NOTE 2 Scenario testing is typically used for conducting “end-to-end testing” during functional testing, such
as during system testing or acceptance testing.

One common form of scenario testing called use case testing (Bath 2008; Hass 2008) utilises a use case
model of the test item that describes how the test item interacts with one or more actors for the purpose
of testing sequences of interactions (i.e. scenarios) involving the test item.

NOTE3 In use case testing, the use case model must be of a type that describes how various actions are
performed by the testitem as a result of various triggers from the actors. An actor can be a user or another system.

NOTE4 Transaction flow testing (Beizer 1995) is often classified as a type of scenario testing.

5.2.9.2 Derive Test Coverage Items (TD3)

The test coverage items shall be the main and alternative scenarios (i.e. the test coverage items are the
same as the test conditions). Therefore, no further action is required at this step for this technique.

5.2.9.3 Derive Test Cases (TD4)

Test cases for scenario testing shall be derived by covering each scenario (test coverage item) with at
least one test case. The following steps shall be used during test case derivation:

a) Select test coverage item(s) to exercise in the current test case;
b) Identify input values to exercise the test coverage item(s) covered by the test case;
c¢) Determine the expected result of the test case by applying the input(s) to the test basis;

d) Repeat steps a) to c) until the required level of test coverage is achieved.

© ISO/IEC 2015 - All rights reserved 17
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.2.10 Random Testing

5.2.10.1 Derive Test Conditions (TD2)

Random testing (BS 7925-2:1998; Craig and Jaskiel 2002; Kaner 1988) uses a model of the input
domain of the test item that defines the set of all possible input values. An input distribution for the
generation of random input values shall be chosen. The entire input domain shall be the test condition
for random testing.

EXAMPLE Types of input distributions include the normal distribution, uniform distribution and
operational profile.

5.2.10.2 Derive Test Coverage Items (TD3)

There are no recognised test coverage items for random testing.

5.2.10.3 Derive Test Cases (TD4)

Test cases for random testing shall be chosen by randomly selecting input values from the input domain
of the test item (or pseudo-randomly if using a tool) according to the chosen input distribution. The
following steps shall be used during test case derivation:

a) Select an input distribution for the selection of test inputs;

b) Generate random values for the test inputs based on the input distribution chosen in step a);
c¢) Determine the expected result of the test case by applying the input(s) to the test basis;

d) Repeat steps b) and c) until the required testing has been completed.

NOTE1 The required testing can be defined in terms of a number of tests executed, an amount of time spent
testing or some other measure of completion.

NOTE 2 Step b) is normally automated.
5.3 Structure-Based Test Design Techniques
5.3.1 Statement Testing

5.3.1.1 Derive Test Conditions (TD2)

A model of the source code of the test item which identifies statements as either executable or non-
executable shall be derived (BS 7925-2:1998, Myers 1979). Each executable statement shall be a
test condition.

NOTE The identification of non-executable statements could be carried out during step TD4, using an
automated tool.

5.3.1.2 Derive Test Coverage Items (TD3)

Each executable statement shall be a test coverage item (i.e. the test coverage items are the same as the
test conditions). Therefore, no further action is required at this step for this technique.

5.3.1.3 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) that reach one or more test coverage items that have not yet been
executed during testing;

18 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

c) Determine the expected result from exercising the control flow sub-path(s) by applying the
corresponding test inputs to the test basis;

d) Repeat steps a) to c) until the required level of test coverage is achieved.
5.3.2 Branch Testing

5.3.2.1 Derive Test Conditions (TD2)

A control flow model that identifies branches in the control flow of the test item shall be derived
(BS 7925-2:1998; 4.7.1). Each branch in the control flow model shall be a test condition.

A branch is:
— aconditional transfer of control from any node in the control flow model to any other node; or

— an explicit unconditional transfer of control from any node to any other node in the control flow
model; or

— when a test item has more than one entry point, a transfer of control to an entry point of the test item.

NOTE1 Complete branch testing covering 100% of all branches requires all arcs (links or edges) in the control
flow graph to be tested, including sequential statements between an entry and exit point that contains no decisions.

NOTE 2 Branch testing can require testing of both conditional and unconditional branches, including entry
and exit points to a test item, depending on the level of test coverage required.

NOTE3 Function and method calls are not identified as separate test conditions in branch testing.

5.3.2.2 Derive Test Coverage Items (TD3)

Each branch in the control flow model shall be a test coverage item (i.e. the test coverage items are the
same as the test conditions). Therefore, no further action is required at this step for this technique.

5.3.2.3 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) that reach one or more test coverage items that have not yet been
executed during testing;

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

¢) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

d) Repeat steps a) to c) until the required level of test coverage is achieved.

NOTE 1 Ifthere are no branches in the test item then a single test condition, test coverage item and test case is
still required.

NOTE 2 If there are multiple entry points to the test item, sufficient test cases will be required to cover
each entry point.

© ISO/IEC 2015 - All rights reserved 19
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.3.3 Decision Testing

5.3.3.1 Derive Test Conditions (TD2)

A control flow model of the test item that identifies decisions shall be derived. Decisions are points in
the test item where two or more possible outcomes (and hence sub-paths) may be taken by the control
flow (BS 7925-2:1998, Myers 1979). Typical decisions are used for simple selections (e.g. if-then-else
in source code), to decide when to exit loops (e.g. while-loop in source code), and in case (switch)
statements (e.g. case-1-2-3-...-N in source code). In decision testing, each decision in the control flow
model shall be a test condition.

5.3.3.2 Derive Test Coverage Items (TD3)

The decision outcomes from each decision shall be identified as test coverage items.

5.3.3.3 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) that reach one or more test coverage items that have not yet been
executed during testing;

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

c) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

d) Repeat steps a) to c) until the required level of test coverage is achieved.

NOTE If there are no decisions in the test item then a single test condition, test coverage item and test case is
still required.

5.3.4 Branch Condition Testing

5.3.4.1 Derive Test Conditions (TD2)

A control flow model of the test item that identifies decisions and conditions within decisions shall be
derived. Decisions are points in the test item where two or more possible outcomes (and hence sub-
paths) may be taken by the control flow (BS 7925-2:1998, Myers 1979). Typical decisions are used for
simple selections (e.g. if-then-else in source code), for deciding when to exit loops (e.g. while-loop in
source code), and for case statements (e.g. case-1-2-3-...-N in source code, also referred to as switch
statements). In branch condition testing (BS 7925-2:1998), each decision shall be a test condition.

EXAMPLE In program source code the decision statement “if A OR B AND C then” is a test condition that
contains three conditions related by logical operators.

5.3.4.2 Derive Test Coverage Items (TD3)

In branch condition testing, all Boolean values (true/false) of the condition(s) within decisions shall be
identified as test coverage items. The decision outcomes from each decision shall also be identified as
test coverage items.

5.3.4.3 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) that cover one or more test coverage items that have not yet been
executed during testing;

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

20 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

c) Identify a subset of test inputs from step b) to cover the Boolean values of conditions within the
decision and the decision outcomes;

d) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

e) Repeat steps a) to d) until the required level of test coverage is achieved.

NOTE If there are no decisions in the test item then a single test condition, test coverage item and test case is
still required.

5.3.5 Branch Condition Combination Testing

5.3.5.1 Derive Test Conditions (TD2)

A control flow model of the test item which identifies decisions and conditions shall be derived. In
branch condition combination testing (BS 7925-2:1998), each decision shall be a test condition.

EXAMPLE In program source code the decision statement “if A OR B AND C then” is a test condition that
contains three conditions related by logical operators.

5.3.5.2 Derive Test Coverage Items (TD3)

Each unique feasible combination of Boolean values of conditions within each decision shall be
identified as a test coverage item (BS 7925-2:1998, Myers 1979). This includes simple decisions, where
combinations consist of two individual Boolean outcomes of a single condition within a decision.

5.3.5.3 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) that reach one or more test coverage items that have not yet been
executed during testing;

b) Determine the set of testinputs that will cause the identified control flow sub-path(s) to be exercised;

¢) Identify a subset of test inputs from step b) to cover the selected combination of Boolean values of
conditions within the decision;

d) Determine the expected result by applying the selected test inputs to the test basis;
e) Repeatsteps a) to d) until the required level of test coverage is achieved.

NOTE If there are no decisions in the test item then a single test condition, test coverage item and test case is
still required.

5.3.6 Modified Condition Decision Coverage (MCDC) Testing

5.3.6.1 Derive Test Conditions (TD2)

A control flow model of the test item that identifies decisions and conditions shall be derived. In modified
condition decision coverage (MCDC) testing (BS 7925-2:1998), each decision shall be a test condition.

EXAMPLE In program source code the decision statement “if A OR B AND C then” is a test condition that
contains three conditions related by logical operators.

5.3.6.2 Derive Test Coverage Items (TD3)

Each unique feasible combination of individual Boolean values of conditions within a decision that
allows a single Boolean condition to independently affect the outcome of the decision shall be identified

© ISO/IEC 2015 - All rights reserved 21
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

as a test coverage item. Whether a condition independently affects the outcome of a decision is shown
by varying only that condition while holding all other possible conditions to fixed states.

NOTE This includes simple decisions, where combinations consist of two individual Boolean outcomes of a
single condition within a decision.

5.3.6.3 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) that reach one or more test coverage items that have not yet been
executed during testing;

b) Determine the set of testinputs that will cause the identified control flow sub-path(s) to be exercised;

c) Identify a subset of test inputs from step b) to cover the selected combinations of individual Boolean
values of conditions within the decision that allow a single Boolean condition to independently
affect the outcome;

d) Determine the expected result by applying the selected test inputs to the test basis;
e) Repeat steps a) to d) until the required level of test coverage is achieved.

NOTE If there are no decisions in the test item then a single test condition, test coverage item and test case is
still required.

5.3.7 Data Flow Testing

5.3.7.1 Derive Test Conditions (TD2)

In data flow testing (Burnstein 2003), a model of the test item shall be derived that identifies control
flow sub-paths through the test item, within which each definition of a given variable is linked to
subsequent use(s) of the same variable and within which there has been no intervening redefinition of
the variable’s value.

“Definitions” are where a variable is possibly given a new value (sometimes a definition will result in a
variable retaining the same value as it had before). A “use” is an occurrence of a variable in which the
variable is not given a new value; “uses” can be further distinguished as either “p-uses” (predicate-use)
or “c-uses” (computation-use). A p-use denotes the use of a variable in determining the outcome of a
condition (predicate) within a decision, such as a while-loop, if- then- else, etc. A c-use occurs when a
variable is used as an input to the computation of the definition of any variable or of an output.

In data flow testing, each definition-use pair for a variable in the test item is a test condition.

There are a number of forms of data flow testing, which are all based on the same test conditions. The
five forms defined in this part of ISO/IEC/IEEE 29119 are: all-definitions testing, all-c-uses testing, all-
p-uses testing, all-uses testing, and all-du-paths testing.

5.3.7.2 All-Definitions Testing

5.3.7.2.1 Derive Test Coverage Items (TD3)

The control flow sub-paths from each variable definition to some use (either p-use or c-use) of that
definition shall be identified as test coverage items. Each sub-path is known as a “definition-use” path. “All-
definitions” testing requires that at least one definition-free sub-path (with relation to a specific variable)
from the definition to one of its c-uses or p-uses will have been covered for all variable definitions.

22 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.3.7.2.2 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:
a) Identify definitions that have not yet been executed during testing;

b) Determine the testinputs that will cause the control flow sub-path(s) from the identified definitions
to be exercised;

c¢) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

d) Repeatsteps a) to c) until the required level of test coverage is achieved.

NOTE In practice, these steps could require automation.
5.3.7.3 All-C-Uses Testing

5.3.7.3.1 Derive Test Coverage Items (TD3)

The control flow sub-paths from each variable definition to each c-use of that definition shall be
identified as test coverage items. “All-c-uses” testing requires that at least one of the definition-free
sub-paths (with relation to a specific variable) from the definition to each one of its c-uses will have
been covered for all relevant variable definitions.

5.3.7.3.2 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) from variable definitions to a subsequent c-use of that definition
(with no intervening definitions) that have not yet been executed during testing;

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

c¢) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

d) Repeatsteps a) to c) until the required level of test coverage is achieved.
5.3.7.4 All-P-Uses Testing

5.3.7.4.1 Derive Test Coverage Items (TD3)

The control flow sub-paths from each variable definition to each p-use of that definition shall be
identified as test coverage items. “All-p-uses” testing requires that at least one of the definition-free
sub-paths (with relation to a specific variable) from the definition to each one of its p-uses will have
been covered for all relevant variable definitions.

5.3.7.4.2 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) from variable definitions to subsequent p-use of that definition
(with no intervening definitions) that have not yet been executed during testing;

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

c¢) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

d) Repeatsteps a) to c) until the required level of test coverage is achieved.

© ISO/IEC 2015 - All rights reserved 23
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.3.7.5 All-Uses Testing

5.3.7.5.1 Derive Test Coverage Items (TD3)

The control flow sub-paths from each variable definition to every use (both p-use and c-use) of that
definition shall be identified as test coverage items. “All-uses” testing requires that at least one sub-
path from each variable definition to each one of its uses that can be reached (without an intervening
definition of the variable) is covered.

5.3.7.5.2 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) from variable definitions to a subsequent p-use or c-use of that
definition that have not yet been executed during testing;

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

c) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

d) Repeat steps a) to c) until the required level of test coverage is achieved.
5.3.7.6 All-DU-Paths Testing

5.3.7.6.1 Derive Test Coverage Items (TD3)

The control flow sub-paths from each variable definition to every use (both p-use and c-use) of that
definition shall be identified as test coverage items. “All-du-paths” testing requires that all sub-paths
from each variable definition to each of its uses that can be reached (without an intervening definition
for the variable) is covered.

NOTE All-du-paths testing requires all loop-free sub-paths from a variable definition to its use be tested

to attempt to achieve 100% test item coverage. This differs from All-uses testing, which requires only one path
from each variable definition to its use to be tested to attempt to achieve 100% test item coverage.

5.3.7.6.2 Derive Test Cases (TD4)
The following steps shall be followed during test case derivation:

a) Identify control flow sub-path(s) from variable definitions to every subsequent p-use and c-use of
that definition that have not yet been executed during testing;

b) Determine the test inputs that will cause the control flow sub-path(s) to be exercised;

c¢) Determine the expected result from exercising the control flow sub-path(s) by applying the test
inputs to the test basis;

d) Repeatsteps a) to c) until the required level of test coverage is achieved.

24 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

5.4 Experience-Based Test Design Techniques
5.4.1 Error Guessing

5.4.1.1 Derive Test Conditions (TD2)

Error guessing (BS 7925-2:1998, Myers 1979) involves the design of a checklist of defect types that may
exist in the test item, allowing the tester to identify inputs to the test item that may cause failures, if
those defects exist in the test item. Each defect type shall be a test condition.

NOTE The checklist of defect types could be derived by various means, such as taxonomies of known
errors, information contained in incident management systems, from a tester’s knowledge, experience and/or

understanding of the test item(s) and/or similar test items or from the knowledge of other stakeholders (e.g.
system users or programmers).

5.4.1.2 Derive Test Coverage Items (TD3)

There are no recognised test coverage items for error guessing.

5.4.1.3 Derive Test Cases (TD4)

Test cases for error guessing are typically derived by selecting a defect type from a checklist of defect
types that are to be covered and deriving test cases that could detect that defect type in the test item, if
it existed. The following steps shall be used during test case derivation:

a) Selecta defect type(s) for coverage by the current test case;

b) Identify input values that could be expected to cause a failure corresponding to the selected
defect type(s);

c¢) Determine the expected result of the test case by applying the input(s) to the test basis;

d) Repeatsteps a) to c) until the required testing has been completed.

6 Test Coverage Measurement

6.1 Overview

The coverage measures defined in this part of ISO/IEC/IEEE 29119 are based on differing degrees of
coverage that are achievable by test design techniques. Coverage levels can range from 0% to 100%. In
each coverage calculation, a number of test coverage items may be infeasible. A test coverage item shall
be defined to be infeasible if it can be shown to not be executable or impossible to be covered by a test
case. The coverage calculation shall be defined as either counting or discounting infeasible items; this
choice will typically be recorded in the Test Plan (defined in ISO/IEC/IEEE 29119-3). If a test coverage
item is discounted, justification for its infeasibility will typically be recorded in a test report. In each
coverage calculation, if there are no test coverage items of a given type in a test item, 100% coverage for
that type of coverage will be defined as being inapplicable for that test item.

When calculating coverage for any technique, the following formula shall be used:
N
Coverage = (?x 100)%

where:
— Coverage is the coverage achieved by a specific test design technique;

— Nis the number of test coverage items covered by executed test cases;

© ISO/IEC 2015 - All rights reserved 25
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

— Tis the total number of test coverage items identified by the test design technique.

Specific values for Coverage, N and T for each technique are defined in the clauses below. The set of
coverage measures presented in the following clauses are designed to be used with the test design
techniques presented in this standard. They are not designed to be an exhaustive list; there may be
other coverage measures that are used by organizations that are not mentioned in this clause.

EXAMPLE Other measures that could be required for assessing the completeness of testing include
measuring the overall percentage of requirements that have been covered during testing.

6.2 Test Measurement for Specification-Based Test Design Techniques

6.2.1 Equivalence Partition Coverage

Coverage for equivalence partitioning shall be calculated using the following definitions:
— Coverage is the equivalence partition coverage;

— Nis the number of partitions covered by executed test cases;

— T is the total number of partitions identified.

6.2.2 Classification Tree Method Coverage

Coverage for the classification tree method shall be calculated using the following definitions.
For minimized combination coverage, the following definitions shall be used:

— Coverage is the minimized combination coverage classification tree method coverage;

— Nis the number of classes covered by executed test cases;

— T is the total number of classes.

For maximized combination coverage the following definitions shall be used:

— Coverage is the maximized combination classification tree method coverage;

— N is the number of combinations of classes covered by executed test cases;

— Tis the total number of combinations of classes.

6.2.3 Boundary Value Analysis Coverage

Coverage for boundary value analysis shall be calculated using the following definitions:
— Coverage is the boundary value coverage;

— Nis the number of distinct boundary values covered by executed test cases;

— Tis the total number of boundary values.

The decision to apply two-value or three-value boundary testing should be recorded.

6.2.4 Syntax Testing Coverage
There is currently no industry agreed approach to calculating coverage for syntax testing.

NOTE Calculating coverage as a percentage is not possible for syntax testing due to the potentially extremely
large number of options and infinite number of mutations possible.

26 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

6.2.5 Combinatorial Test Design Technique Coverage

6.2.5.1 All Combinations Testing Coverage

Coverage for all combinations testing shall be calculated using the following definitions:
— Coverage is all combinations coverage;

— Nis the number of unique combinations of P-V pairs covered by executed test cases;

— T is the total number of unique P-V pair combinations (the product of the number of P-V pairs for
each test item parameter).

NOTE For a definition of P-V pair, refer to 4.2.3.

6.2.5.2 Pair-wise Testing Coverage

Coverage for pair-wise testing shall be calculated using the following definitions:
— Coverage is pair-wise coverage;

— Nis the number of unique pairs of P-V pairs covered by executed test cases;

— T s the total number of unique pairs of P-V pairs.

6.2.5.3 Each Choice Testing Coverage

Coverage for each choice testing shall be calculated using the following definitions:
— Coverage is each choice coverage;

— Nis the number of P-V pairs covered by executed test cases;

— T is the total number of unique P-V pairs.

6.2.5.4 Base Choice Testing Coverage
Coverage for base choice testing shall be calculated using the following definitions:
— Coverage is base choice coverage;

— N is the number of base choice combinations covered by executed test cases (all but one test item
parameter set to the base value, and the remaining test item parameter set to valid values), plus one
(for when all test item parameters are set to the base value) if exercised;

— T is the total number of base choice combinations (all but one test item parameter set to the base
value, and the remaining test item parameter set to valid values), plus one (for when all test item
parameters are set to the base value).

6.2.6 Decision Table Testing Coverage

Coverage for decision table testing shall be calculated using the following definitions:
— Coverage is decision table coverage;

— Nis the number of feasible decision rules covered by executed test cases;

— T is the total number of feasible decision rules.

© ISO/IEC 2015 - All rights reserved 27
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

6.2.7 Cause-Effect Graphing Coverage

Coverage for cause-effect graphing shall be calculated using the following definitions:
— Coverage is the cause/effect coverage;

— N is the number of decision rules covered by executed test cases;

— Tis the total number of feasible decision rules.

6.2.8 State Transition Testing Coverage

Coverage for all states testing shall be calculated using the following definitions:

— Coverage is all states coverage;

— Nis the number of states covered by executed test cases;

— T is the total number of states.

Coverage for single transitions (0-switch coverage) shall be calculated using the following definitions:
— Coverage is 0-switch coverage;

— Nis the number of single valid transitions executed by test cases;

— T is the total number of single valid transitions.

Coverage for all transitions shall be calculated using the following definitions:

— Coverage is all transitions transition coverage;

— Nis the number of valid and invalid transitions attempted to be covered by executed test cases;
— Tisthetotal number of valid and invalid transitions between identified states initiated by valid events.
Coverage for N+1 transitions (N switch testing) shall be calculated using the following definitions:

— Coverage is N-switch coverage;

— N is the number of N+1 valid transitions covered by executed test cases;

— Tis the total number of sequences of N+1 valid transitions.

6.2.9 Scenario Testing Coverage

Coverage for scenario testing (including use case testing) shall be calculated using the following
definitions:

— Coverage is scenario coverage;
— Nis the number of scenarios covered by executed test cases;

— T is the total number of scenarios.

6.2.10 Random Testing Coverage

There is currently no industry agreed approach to calculating coverage for random testing.

28 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

6.3 Test Measurement for Structure-Based Test Design Techniques

6.3.1 Statement Testing Coverage

Coverage for statement testing shall be calculated using the following definitions:
— Coverage is statement coverage;

— Nis the number of executable statements covered by executed test cases;

— T is the total number of executable statements.

6.3.2 Branch Testing Coverage

Coverage for branch testing shall be calculated using the following definitions:
— Coverage is branch coverage;

— Nis the number of branches covered by executed test cases;

— T s the total number of branches.

NOTE For situations where there are no branches in the test item, a single test is required to achieve 100%
branch coverage.

6.3.3 Decision Testing Coverage

Coverage for decision testing shall be calculated using the following definitions:
— Coverage is decision coverage;

— N is the number of decision outcomes covered by executed test cases;

— T is the total number of decision outcomes.

NOTE For situations where there are no decisions in the test item, a single test is required to achieve 100%
decision coverage.

6.3.4 Branch Condition Testing Coverage
Coverage for branch condition testing shall be calculated using the following definitions:
— Coverage is branch condition coverage;

— N is the number of Boolean values of conditions within decisions plus the number of decision
outcomes covered by executed test cases;

— T is the total number of Boolean values of conditions within decisions plus the total number of
decision outcomes.

NOTE For situations where there are no decisions in the test item, a single test is required to achieve 100%
branch condition coverage.

6.3.5 Branch Condition Combination Testing Coverage
Coverage for branch condition combination testing shall be calculated using the following definitions:
— Coverage is branch condition combination coverage;

— N is the number of combinations of Boolean values of conditions within each decision covered by
executed test cases;

© ISO/IEC 2015 - All rights reserved 29
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

— Tis the total number of unique combinations of Boolean values of conditions within decisions.

NOTE For situations where there are no decisions in the test item, a single test is required to achieve 100%
branch condition combination coverage.

6.3.6 Modified Condition Decision (MCDC) Testing Coverage

Coverage for modified condition decision coverage testing shall be calculated using the following
definitions:

— Coverage is modified condition decision coverage;

— N is the number of unique feasible combinations of individual Boolean values of conditions within
decisions that allow a single Boolean condition to independently affect the decision outcome to be
covered by executed test cases;

— T is the total number of unique combinations of individual Boolean values of conditions within
decisions that allow a single Boolean condition to independently affect the outcome.

NOTE For situations where there are no decisions in the test item, a single test is required to achieve 100%
modified condition decision coverage.

6.3.7 Data Flow Testing Coverage

6.3.7.1 All-Definitions Testing Coverage
Coverage for all-definitions testing shall be calculated using the following definitions:
— Coverage is all-definitions coverage;

— N is the number of definitions associated with data-definition-use pairs covered by executed test
cases;

— T is the total number of definitions-use pairs from distinct variable definitions.

6.3.7.2 All-C-Uses Testing Coverage

Coverage for all-c-uses testing shall be calculated using the following definitions:
— Coverage is all-c-uses coverage;

— Nis the number of definition-c-use pairs covered by executed test cases;

— Tis the total number of definition-c-use pairs.

6.3.7.3 All-P-Uses Testing Coverage

Coverage for all-p-uses testing shall be calculated using the following definitions:
— Coverage is all-p-uses coverage;

— Nis the number of definition-p-use pairs covered by executed test cases;

— Tis the total number of definition-p-use pairs.

6.3.7.4 All-Uses Testing Coverage
Coverage for all-uses testing shall be calculated using the following definitions:
— Coverage is all-uses coverage;

— Nis the number of unique definition-use pairs covered by executed test cases;

30 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

— T is the total number of definition-use pairs from each definition to both p-use and c-use of that
definition.

6.3.7.5 All-DU-Paths Testing Coverage
Coverage for all-du-paths testing shall be calculated using the following definitions:
— Coverage is all-du-paths coverage;

— N is the number of sub-paths from each variable definition to each of its uses that can be reached
(without an intervening definition of the variable) covered by executed test cases;

— Tisthetotal number of simple sub-paths from each definition to both p-use and c-use of that definition.
6.4 Test Measurement for Experience-Based Testing Design Techniques

6.4.1 Error Guessing Coverage

There is currently no industry agreed approach to calculating coverage for error guessing.

© ISO/IEC 2015 - All rights reserved 31
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Annex A
(informative)

Testing Quality Characteristics

A.1 Quality Characteristics

A.1.1 Overview

Software testing is carried out to collect evidence as to whether required quality criteria have been
satisfied by a test item. This informative annex contains examples of how quality characteristics
defined in ISO/IEC 25010 (ISO/IEC 25010:2011) can be mapped to the test design techniques defined
in this part of ISO/IEC/IEEE 29119. The test design techniques defined in this standard could be used
for testing a variety of these characteristics. There may be other quality characteristics that could be
considered (e.g. privacy).

ISO/IEC 25010 defines the product quality model shown below in Figure A.1, which categorizes
system/software product quality properties into eight characteristics: functional suitability,
performance efficiency, compatibility, usability, reliability, security, maintainability and portability.
Each characteristic is composed of a set of related sub-characteristics. In some situations, there may
be regulatory requirements (e.g. government policies or laws) that mandate that certain quality
characteristics are met by a system. Various test design techniques and types of testing can be used to
test for each characteristic (see Clauses A.3 and A.4).

Clause A.2 provides an explanation of types of testing that can be used to test the quality characteristics
presented in Figure A.1. A mapping of each quality characteristic to applicable types of testing is
presented in Clause A.3. The relationship between the quality characteristics and the specification-
based and structure-based test design techniques covered in this part of ISO/IEC/IEEE 29119 is
explained in Clause A.4.

Software/System Product Quality
I

[

I

I

I

I

I

]

Functional | [Performance - . A . Maintain- s
1 . Compatibility Usability Reliability Security o Portability
Suitability Efficiency ability
Functional Time behaviour Co-existence [Appropriateness Maturity Confidentiality Modularity Adaptability
completeness Resource Interoperability | | recognisability Availability Integrity Reusability Installability
Functional utilisation Learnability Fault tolerance | |[Non-repudiation| | Analysability Replaceability
correctness ; i
Functional Capacity Operability Recoverability | | Accountability Modifiability
unctiona
: User error Authenticity Testability
appropriateness protection
User interface
aesthetics
Accessibility

NOTE ISO/IEC 25030 (ISO/IEC 25030:2007) can be used to identify and document software quality
requirements that are applicable to a test item. These can then be used to identify quality characteristics
in ISO/IEC 25010 (ISO/IEC 25010:2011) and corresponding types of testing that apply to testing each quality
requirement.

Figure A.1 — ISO/IEC 25010 product quality model

32 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

A.2 Quality-Related Types of Testing

A.2.1 Accessibility Testing

The purpose of accessibility testing is to determine whether the test item can be operated by users with
the widestrange of characteristics and capabilities (ISO/IEC 25010:2011), including specific accessibility
requirements (e.g. due to age, visual impairment or hearing impairment). Accessibility testing uses a
model of the test item that specifies its accessibility requirements, including any accessibility design
standards to which the test item must conform. Accessibility requirements are concerned with the
ability of a user with specific accessibility needs to achieve accessibility objectives. For example, this
could include a requirement for the test item to support visual and/or hearing impaired users.

NOTE The World Wide Web Consortium (W3C) defines standards for accessibility, including accessibility of
web applications and devices. Visit <http://www.w3.org/standards/> for more information.

A.2.2 Backup/Recovery Testing

The purpose of backup/recovery testing is to determine if, in the event of failure, a test item can be
restored from backup to its pre-failure state. Backup/recovery testing uses a model of the test item that
specifies its backup and recovery requirements, which specify the need to back up the operational state
of a test item at a point in time, including data, configuration and/or environment and restore the state
of the test item from that backup. Backup/recovery testing then focusses on testing the correctness of
the test item’s backup and the correctness of the restored state of the test item against its pre-failure
state. Backup/recovery testing can also be used to verify whether the backup and recovery procedures
for the test item achieve specified recovery objectives. This type of testing may be carried out as part of
a disaster recovery test (see A.2.5).

A.2.3 Compatibility Testing

The purpose of compatibility testing is to determine whether the test item can function alongside other
independent or dependent (but not necessarily communicating) products in a shared environment (i.e.
co-existence). Compatibility testing may also be applied to multiple copies of the same test item or to
multiple test items sharing a common environment.

Compatibility requirements for test items typically include one or more of the following sub-
requirements:

— Orderofinstallation. Explicit order(s) of installation (otherwise it should be assumed thatall possible
orders of installation are valid) results in a configuration where each test item will subsequently
perform its required functions correctly.

— Order of instantiation. Explicit order(s) of instantiation (otherwise it should be assumed that all
possible orders of instantiation are valid) result in a run-time configuration where each test item
will subsequently perform its required functions correctly.

— Concurrent use. The ability of two or more test items to perform their required functions while
running (but not necessarily communicating) in the same environment.

— Environment constraints. Features of the environment, such as memory, processor, architecture,
platform or configuration, that may affect the ability of the test item to perform its required
functions correctly.

A.2.4 Conversion Testing

The purpose of conversion testing is to determine whether data or software can continue to provide
required capabilities after modifications are made to their format, such as converting a program from
one programming language to another or converting a flat data file or database from one format to
another. One common subtype of conversion testing is data migration testing. Conversion testing uses
a model of the test item that specifies its conversion requirements, including those that must remain

© ISO/IEC 2015 - All rights reserved 33
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

http://www.w3.org/standards/

ISO/IEC/IEEE 29119-4:2015(E)

invariant through the conversion process, those that are new, modified, or obsoleted by the conversion
and any required conversion design standards to which the test item must conform.

A.2.5 Disaster Recovery Testing

The purpose of disaster recovery testing is to determine if, in the event of failure, operation of the test
item can be transferred to a different operating site and whether it can be transferred back again once
the failure has been resolved. Disaster recovery testing uses a model of the test item (typically a disaster
recovery plan) that specifies its disaster recovery requirements, including any required disaster
recovery design standards to which the test item must conform. The test item in disaster recovery
testing may be an entire operational system, with associated facilities, personnel, and procedures.
Disaster recovery testing may cover factors such as procedures to be carried out by operational staff,
relocation of data, software, personnel, offices, or other facilities, or recovering data previously backed
up to a remote location.

A.2.6 Functional Testing

The purpose of functional testing is to determine whether the functional requirements of the test item
have been met. For example, this could include identifying whether a function had been implemented
according to its specified requirements. It could be carried out using the specification-based and
structure-based test design techniques that are specified in Clause 5.

A.2.7 Installability Testing

The purpose of installability testing is to determine ifa testitem(s) can be installed, uninstalled /removed
and/or upgraded as required in all specified environments. Installability testing uses a model of the
installability requirements of the test item, which are typically specified in terms of the installation,
uninstallation or upgrade processes (as described in the installation manual or guidelines), the people
who will carry out the installation, uninstallation or upgrade, the target platform(s) and the test item(s)
to be installed, uninstalled or upgraded.

A.2.8 Interoperability Testing

The purpose of interoperability testing is to determine if a test item can interact correctly with other
test items or systems either in the same environment or different environments, including whether the
test item can make effective use of information received from other systems. Interoperability testing
uses a model of the test item that specifies its interoperability requirements, including interoperability
design standards to which the test item must conform. This could include assessing whether a test
item running in one environment can interact accurately with another test item or system in another
separate environment.

A.2.9 Localization Testing

The purpose of localization testing is to determine whether the test item can be understood within the
geographical region it is required to be used in. Localization testing can include (but is not limited to)
analysis of whether the user interface and supporting documentation of the test item can be understood
by users within each country or region of use.

A.2.10 Maintainability Testing

The purpose of maintainability testing is to determine if a test item can be maintained by using an
acceptable amount of effort. Maintainability testing uses a model of the maintainability requirements
of the test item, which are typically specified in terms of the effort required to effect a change under the
following categories:

— corrective maintenance (i.e. correcting problems);

— perfective maintenance (i.e. enhancements);

34 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

— adaptive maintenance (i.e. adapting to changes in environment); and
— preventive maintenance (i.e. actions to reduce future maintenance costs).

Maintainability can be indirectly measured by applying static analysis.

A.2.11 Performance-Related Testing

The purpose of this family of techniques is to determine whether a test item performs as required
when it is placed under various types and sizes of “load”. This includes performance, load, stress,
endurance, volume, capacity and memory management testing, which each use a model of the test item
that specifies its performance requirements, including any required performance design standards to
which the test item must conform. For example, this may include assessing the performance of the test
item in terms of transactions per second, throughput response times, round trip time and resource
utilization levels. The “typical” load of the test item under “normal” conditions may be defined in the
operational profile of the test item.

There are numerous techniques for assessing the performance of the test item:

— Performance testing is aimed at assessing the performance of the test item when it is placed under
a “typical” load.

— Load testing is aimed at assessing the behaviour of the test item (e.g. performance and reliability)
when it is placed under conditions of varying loads, usually between anticipated conditions of low,
typical and peak usage.

— Stress testing is aimed at assessing the performance of the test item when it is pushed beyond its
anticipated peak load or when available resources (e.g. memory, processor, disk) are reduced below
specified minimum requirements, to evaluate how it behaves under extreme conditions.

— Endurance testing (also called soak testing) is aimed at assessing whether the test item can sustain
the required load for a continuous period of time.

— Volume testing is aimed at assessing the performance of the test item when it is processing specified
levels of data. For example, this may include assessing test item performance when its database is
nearing maximum capacity.

— Capacity testing (also called scalability testing) is aimed at assessing how the test item will perform
under conditions that may need to be supported in the future. For example, this may include
assessing what level of additional resources (e.g. memory, disk capacity, network bandwidth) will
be required to support anticipated future loads.

— Memory management testing is aimed at assessing how the test item will perform in terms of the
amount (normally maximum) of memory used (e.g. hard disk memory, RAM and ROM), the type of
memory (e.g. dynamic or allocated/static) and/or defined levels of memory leakage experienced
during testing. Memory requirements will typically be specified in terms of specific operating
conditions (e.g. a peak memory requirement over a particular period of operation under defined
transaction loads may be specified).

A.2.12 Portability Testing

The purpose of portability testing is to determine the degree of ease or difficulty to which a test
item can be effectively and efficiently transferred from one hardware, software or other operational
or usage environment to another. Portability testing uses a model of the test item that specifies its
portability requirements, including any required portability design standards to which the test item
must conform. Portability requirements are concerned with the ability to transfer the test item from
one environment to another, or to alter the configuration of the existing environment to other required
configurations. For example, this could include assessing whether the test item can be operated from a
variety of different browsers.

© ISO/IEC 2015 - All rights reserved 35
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

A.2.13 Procedure Testing

The purpose of procedure testing is to determine whether procedural instructions meet user
requirements and support the purpose of their use. Procedure testing uses a model of the procedural
requirements of the test item as a complete and delivered unit. Procedure requirements define what
is expected of any procedural documentation and are written in the form of procedural instructions.
These procedural instructions will normally come in the form of one of the following documents:

— auser guide;

— an instruction manual;

— auser reference manual.

This information will normally define how the user is meant to:
— setup the test item for normal usage;

— operate the test item in normal conditions;

— become a competent user of the system (tutorial files);

— trouble-shoot the test item when faults arise;

— reconfigure the test item.

A.2.14 Reliability Testing

The purpose of reliability testing is to evaluate the ability of the test item to perform its required
functions, including evaluating the frequency with which failures occur, when it is used under stated
conditions for a specified period of time. Reliability testing uses a model of the test item that specifies
its required level of reliability (e.g. mean time to failure, mean time between failures). The model should
include a definition of failure and either the operational profile of the test item or an approach to derive
the operational profile.

A.2.15 Security Testing

The purpose of security testing is to evaluate the degree to which a test item and its associated data
are protected so that unauthorised persons or systems cannot use, read or modify them and authorised
persons or systems are granted required access to them. Security testing uses a model of the test item
that specifies its security requirements, including any required security design standards to which the
test item must conform. Security requirements are concerned with the ability to protect the data and
functionality of a test item from unauthorised users and malicious use. For example, this could include
assessing whether the test item prevents unauthorised users from accessing data, or whether certain
functions of a test item that are only required to be accessible by certain user types are protected from
other user types.

There are a number of techniques for assessing the security of a test item:

— Penetration testing involves attempted access to a test item (including its functionality and/or
private data) by a tester that is mimicking the actions of an unauthorised user.

— Privacy testing involves attempted access to private data and verification of the audit trail (i.e.
trace) that is left behind when users access private data.

— Security auditing is a type of static testing in which a tester inspects, reviews or walks through the
requirements and code of a test item to determine whether any security vulnerabilities are present.

— Vulnerability scanning involves the use of automated testing tools to scan a test item for signs of
specific known vulnerabilities.

36 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

A.2.16 Usability Testing

The purpose of usability testing is to evaluate whether specified users can use the test item to achieve
assigned goals with effectiveness, efficiency and satisfaction in specified contexts of use. Usability
testing therefore uses a model of the test item that specifies its usability requirements, including any
required usability design standards to which the test item must conform. Usability requirements specify
the usability goals for the test item. Usability goals must be based on test item goals (the reason for
having the test item, the difference it is to bring about for the organization or individual, the usability-
related purpose and tasks it will aid), and the contexts of use for the test item (who is to use the test
item and the environment in which it is to be used, user characteristics and user tasks). Usability goals
will be defined for the effectiveness, efficiency and satisfaction for specified users to achieve specified
goals in one or more specified contexts of use.

NOTE ISO/IEC 9241 defines standards for defining the requirements for human-systems interaction.

A.3 Mapping Quality Characteristics to Types of Testing

A.3.1 Mapping

In the table below, the types of testing that were presented in Clause A.2 are mapped to the quality
characteristics that were presented in Figure A.1 (in A.1.1).

Table A.1 — Mapping of ISO/IEC 25010 product quality characteristics to types of testing

Type of Testing Quality Characteristic Sub-Characteristics
Accessibility Testing Usability Accessibility
Backup/Recovery Testing Reliability Maturity
Fault tolerance
Recoverability
Compatibility Testing Compatibility Co-existence
Conversion Testing Functional Suitability Functional completeness

Functional correctness

Functional appropriateness

Disaster Recovery Testing Reliability Maturity
Fault tolerance
Recoverability
Functional Testing Functional Suitability Functional completeness

Functional correctness

Functional appropriateness

Installability Testing Portability Installability
Interoperability Testing Compatibility Interoperability
© ISO/IEC 2015 - All rights reserved 37

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table A.1 (continued)
Type of Testing Quality Characteristic Sub-Characteristics
Localization Testing Functional Suitability Functional completeness

Functional correctness

Functional appropriateness

Usability Appropriateness recognisability

Learnability

Operability

User error protection

User interface aesthetics

Accessibility

Portability Adaptability

Maintainability Testing Maintainability Modularity

Reusability

Analysability
Modifiability
Testability

Performance-Related Testing Performance efficiency Time-behaviour

Resource utilisation

Capacity

Portability Testing Portability Adaptability

Installability

Replaceability

Procedure Testing None None

Reliability Testing Reliability Maturity

Availability

Fault tolerance

Recoverability

Security Testing Security Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Usability Testing Usability Appropriateness recognisability

Learnability

Operability

User error protection

User interface aesthetics

Accessibility

38 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

A.4 Mapping Quality Characteristics to Test Design Techniques

A.4.1 Mapping

The test design techniques described in this part of ISO/IEC/IEEE 29119 can be used to test a variety
of the quality characteristics listed in Figure A.1. The following table provides an example mapping

between them.

Table A.2 — Mapping of test design techniques to product quality measures for ISO/IEC 25010

product characteristics

Test Design Technique

1S0/IEC 25010 Quality Characteristic |ISO/IEC 25010 Sub-Characteristics

Specification-Based Test Design Techniques

Boundary Value Analysis

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Performance Efficiency

Time-behaviour

Capacity
Usability User error protection
Reliability Fault tolerance
Security Confidentiality
Integrity

Cause-Effect Graphing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Usability

User error protection

Compatibility

Co-existence

Classification Tree Method

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Usability

User error protection

Combinatorial Test Design
Techniques

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Compatibility

Co-existence

Performance Efficiency

Time-behaviour

Usability

User error protection

Decision Table Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Compatibility

Co-existence

Usability

User error protection

© ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

39

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table A.2 (continued)

Test Design Technique ISO/IEC 25010 Quality Characteristic |ISO/IEC 25010 Sub-Characteristics

Equivalence Partitioning

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Usability

User error protection

Reliability

Availability

Security

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Random Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Performance

Time behaviour

Resource utilisation

Capacity

Reliability

Maturity

Availability

Fault tolerance

Recoverability

Security

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Scenario Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Usability

Learnability

Operability

User error protection

User interface aesthetics

Accessibility

Appropriateness recognisability

State Transition Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Reliability

Maturity

Availability

Fault tolerance

Recoverability

40 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

Table A.2 (continued)

ISO/IEC/IEEE 29119-4:2015(E)

Test Design Technique

ISO/IEC 25010 Quality Characteristic

ISO/IEC 25010 Sub-Characteristics

Syntax Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Use Case Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Usability

Learnability

Operability

User error protection

User interface aesthetics

Accessibility

Appropriateness recognisability

Structure-Based Test Design Techniques

Branch Condition Combina-
tion Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Branch Condition Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Branch Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Data Flow Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Decision Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Modified Condition Decision
Coverage (MCDC) Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Statement Testing

Functional Suitability

Functional completeness

Functional correctness

Functional appropriateness

Experience-Based Test Design Techniques

© ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

41

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table A.2 (continued)

Test Design Technique ISO/IEC 25010 Quality Characteristic |ISO/IEC 25010 Sub-Characteristics

Error Guessing Functional Suitability Functional completeness

Functional correctness

Functional appropriateness

Performance Efficiency Time-behaviour

Resource utilisation

Capacity

Usability Learnability

Operability

User error protection

Reliability Fault tolerance

42 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Annex B
(informative)

Guidelines and Examples for the Application of Specification-
Based Test Design Techniques

B.1 Guidelines and Examples for Specification-Based Testing

B.1.1 Overview

This annex provides guidance on the requirements in 5.2 and 6.2 by demonstrating the application of
each individual specification-based test design technique to a separate problem. Each example follows
the Test Design and Implementation Process that is defined in ISO/IEC/IEEE 29119-2. Although each
example is applied in a specification-based testing context, as stated in 5.1, in practice most of the
techniques defined in this part of ISO/IEC/IEEE 29119 can be used interchangeably (e.g. boundary value
analysis could be used to test the inputs to a program through the user interface or the boundaries of
variables within program source code).

B.2 Specification-Based Test Design Technique Examples

B.2.1 Equivalence Partitioning

B.2.1.1 Introduction

The aim of equivalence partitioning is to derive a set of test cases that cover the input and output
partitions of the test item according to the chosen level of equivalence partition coverage. Equivalence
partitioning is based on the premise that the inputs and outputs of a test item can be partitioned into
classes that, according to the test basis for the test item, will be treated similarly by the test item. Thus
the result of testing any value in one equivalence partition can be considered representative of the
result of testing with any other value in that partition.

B.2.1.2 Specification
Consider a test item, generate_grading, with the following test basis:

The component receives an exam mark (out of 75) and a coursework (c/w) mark (out of 25) as input,
from which it outputs a grade for the course in the range ‘A’ to ‘D’. The grade is generated by calculating
the overall mark, which is the sum of the exam and c/w marks, as follows:

greater than or equal to 70 - A’
greater than or equal to 50, but less than 70 - ‘B’
greater than or equal to 30, but less than 50 - T
less than 30 - D’

Where invalid input(s) are detected (e.g. a mark is outside its expected range) then a fault message
(‘FM’) is generated. All inputs are passed as integers.

B.2.1.3 Step 1: Identify Feature Sets (TD1)

As there is only one test item defined in the test basis, only one feature set needs to be defined:

© ISO/IEC 2015 - All rights reserved 43
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

FS1: generate_grading function

B.2.1.4 Step 2: Derive Test Conditions (TD2)

In equivalence partitioning, the equivalence partitions are test conditions (TCOND). Equivalence
partitions are identified from both the inputs and outputs of the test item. Valid and invalid inputs and
outputs are considered.

The partitions for the two inputs are initially identified. The valid partitions can be described by:
TCOND1: 0 <= exam mark <= 75 (for FS1)
TCOND2: 0 <= coursework mark <= 25 (for FS1)

The most obvious invalid partitions based on the inputs can be described by:

TCOND3: exam mark < 0 (for FS1)
TCOND4: exam mark > 75 (for FS1)
TCOND5: coursework mark < 0 (for FS1)
TCONDG6: coursework mark > 25 (for FS1)

Partitioned ranges of values can be represented pictorially, therefore, for the input, exam mark, we get:

75
>

<
exam< 0 ¢ 0 < €Xam _ ¢ > < exam ¢ N
mark mark mark

Figure B.1 — Input “exam mark”

And for the input, coursework mark, we get:

< } >
<« <o _>I<70< c/w <254>I4_C/W >25— P

mark mark mark

Figure B.2 — Input “coursework mark”

Less obvious invalid input partitions could include any other input types, such as non-integer inputs
and non-numeric inputs. So, we could generate the following invalid input equivalence partitions:

TCOND7: exam mark = real number with a fractional part (for FS1)
TCONDS: exam mark = alphabetic (for FS1)
TCONDO: exam mark = special character (for FS1)
TCOND10: coursework mark = real number with a fractional part (for FS1)
TCOND11: coursework mark = alphabetic (for FS1)
TCOND12: coursework mark = special character (for FS1)

44 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Next, the partitions for the valid outputs are identified:

TCOND13: ‘A’ is induced by 70 <= total mark <= 100 (for FS1)
TCOND14: ‘B’ is induced by 50 <= total mark < 70 (for FS1)
TCOND15: ‘C’ is induced by 30 <= total mark < 50 (for FS1)
TCOND16: ‘D’ is induced by 0 <= total mark < 30 (for FS1)
TCOND17: ‘Fault Message’ (FM) is induced by total mark > 100 (for FS1)
TCOND18: ‘Fault Message’ (FM) is induced by total mark < 0 (for FS1)
TCOND19: ‘Fault Message’ (FM) is induced by non-integer inputs (for FS1)

where total mark = exam mark + coursework mark. Note that ‘Fault Message’ is considered as a valid
output as it is a specified output.

The equivalence partitions and boundaries for total mark are shown pictorially below:

‘FM’ (l) ‘D’ 310 ‘c 50 (cont.
< total total total below)
<4— <0—> <—OS <30—> 4—305 <50

mark mark mark
(cont. 50 B 710 " 10 M
from | | | >
above 50< fRL70__y, 70< %% <100 _plg——"0°% 5100 _p
) mark mark » mark

Figure B.3 — Equivalence partitions and boundaries for total mark

An invalid output would be any output of the test item other than any of the five specified. It can be
challenging to identify unspecified outputs. However, they must be considered because if we can cause
one to occur, then we have identified a flaw with the test item, its test basis, or both. For this example
three unspecified outputs were identified and are shown below. This aspect of equivalence partitioning
is very subjective and different testers may identify different partitions which they feel could possibly
occur (this is described in 5.2.1.1 NOTE 2).

TCOND20: output = ‘E’, in case this (invalid) extra grade has been implemented (for FS1)
in error for total marks from 0 to 15

TCOND21: output = ‘A+, in case this (invalid) extra grade has been implemented (for FS1)
in error for total marks from 90 to 100

TCOND22: output = ‘null’, in case a ‘null’ output can be generated (for FS1)

B.2.1.5 Step 3: Derive Test Coverage Items (TD3)

In equivalence partitioning, the test coverage items are the partitions that were derived in the previous
step (i.e. test conditions are the same as test coverage items in this technique). Thus, the following test
coverage items can be defined.

TCOVERT1: 0 <= exam mark <= 75 (for TCOND1)
TCOVERZ2: 0 <= coursework mark <= 25 (for TCONDZ2)
© ISO/IEC 2015 - All rights reserved 45

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOVER3: exam mark <0 (for TCOND3)
TCOVER4: exam mark > 75 (for TCOND4)
TCOVERS: coursework mark < 0 (for TCONDS)
TCOVERG6: coursework mark > 25 (for TCONDS®6)
TCOVER?7: exam mark = real number with a fractional part (for TCOND7)
TCOVERS: exam mark = alphabetic (for TCONDS)
TCOVERGO: exam mark = special character (for TCOND?9)
TCOVER10: coursework mark = real number with a fractional part (for TCOND10)
TCOVER11: coursework mark = alphabetic (for TCOND11)
TCOVER12: coursework mark = special character (for TCOND12)
TCOVER13: ‘A’ is induced by 70 <= total mark <= 100 (for TCOND13)
TCOVER14: ‘B’ is induced by 50 <= total mark <70 (for TCOND14)
TCOVER15: ‘C’is induced by 30 <= total mark < 50 (for TCOND15)
TCOVER16: ‘D’ is induced by 0 <= total mark < 30 (for TCOND16)
TCOVER17: ‘Fault Message’ (FM) is induced by total mark > 100 (for TCOND17)
TCOVER18: ‘Fault Message’ (FM) is induced by total mark < 0 (for TCOND18)
TCOVER19: ‘Fault Message’ (FM) is induced by non-integer input(s) (for TCOND19)
TCOVERZ20: output = ‘E’ (for TCOND20)
TCOVER21: output = ‘A+’ (for TCONDZ21)
TCOVER22: output = ‘null’ (for TCOND22)

B.2.1.6 Step 4: Derive Test Cases (TD4)

B.2.1.6.1 Options

Having identified partitions and test coverage items to be tested, test cases are derived that attempt
to “hit” each test coverage item. Two common approaches for test case design are one-to-one and
minimized equivalence partitioning (other approaches to selecting combinations of test coverage
items to be exercised by test cases that may be used are described in 5.2.5). In the first a test case is
generated for each identified partition on a one-to-one basis (see option 4a below), while in the second
a minimized set of test cases is generated to cover all the identified partitions (see option 4b below).
The preconditions of all test cases for the generate_grading function are the same: that the application
is ready to take the inputs of exam mark and coursework mark.

B.2.1.6.2 Option 4a: Derive Test Cases for One-to-One Equivalence Partitioning (TD4)

The one-to-one approach will be demonstrated first as it can make it easier to see the link between
partitions and test cases. For each of these test cases only the single test coverage item being targeted
is stated explicitly. Twenty-two test coverage items were identified leading to twenty-two test cases.

The test cases corresponding to partitions derived from the input exam mark are shown below. Note
that the input coursework mark in the following test case table has been set to an arbitrary valid value

46 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

of 15. The allocation of an arbitrary valid value to all inputs in the test case (other than the one being
tested) has been carried out for all test cases in this clause.

Table B.1 — Test cases for input exam mark

Test Case 1 2 3
Input (exam mark) 60 -10 93
Input (c/w mark) 15 15 15
total mark (as calculated) 75 5 108
Test Coverage Item TCOVER1 TCOVER3 TCOVER4
Partition tested (of exam mark) 0<=e<=75 e<0 e>75
Exp. Output ‘A FM’ ‘FM’
The test cases corresponding to partitions derived from the input coursework mark are:
Table B.2 — Test cases for input coursework mark
Test Case 4 5 6
Input (exam mark) 40 40 40
Input (c/w mark) 20 -15 47
total mark (as calculated) 60 25 87
Test Coverage Item TCOVER2 TCOVERS5 TCOVER6
Partition tested (of c/w mark) 0<=c<=25 c<0 c>25
Exp. Output ‘B’ ‘FM’ ‘FM’
The test cases corresponding to partitions derived from possible invalid inputs are:
Table B.3 — Test cases for invalid inputs for exam mark

Test Case 7 8

Input (exam mark) 60.5 Q $
Input (c/w mark) 15 15 15
total mark (as calculated) 75.5 not applicable not applicable
Test Coverage Item TCOVER7 TCOVERS8 TCOVER9
Partition tested exam mark = exam mark = exam mark =

real number with alphabetic special char
fractional part
Exp. Output ‘FM’ ‘FM’ FM’
Table B.4 — Test cases for invalid inputs for coursework mark

Test Case 10 11 12
Input (exam mark) 40 40 40
Input (c/w mark) 20.23 G @

total mark (as calculated) 60.23 not applicable not applicable
Test Coverage Item TCOVER10 TCOVER11 TCOVER12
Partition tested c¢/w mark = ¢/w mark = alpha- | c/w mark = special

real number with betic char
fractional part

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

47

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.4 (continued)
Test Case 10 11 12
Exp. Output ‘FM’ ‘FM’ ‘FM’

The test cases corresponding to partitions derived from the valid outputs are:

Table B.5 — Test cases for valid output total mark

Test Case 13 14 15
Input (exam mark) 60 44 32
Input (c/w mark) 20 22 13
total mark (as calculated) 80 66 45
Test Coverage Item TCOVER13 TCOVER14 TCOVER15
Partition tested (of total mark) 70 <=t<=100 50<=t<70 30<=t<50
Exp. Output ‘A ‘B’ ‘c

Table B.6 — Test cases for valid output total mark

Test Case 16 17 18
Input (exam mark) 12 80 -10
Input (c/w mark) 5 60 -10
total mark (as calculated) 17 140 -20
Test Coverage Item TCOVER16 TCOVER17 TCOVER18
Partition tested (of total mark) 0<=t<30 t>100 t<0
Exp. Output ‘D’ ‘FM’ ‘FM’

The input values of exam mark and coursework mark have been derived from total mark, which is their
sum.

The test cases corresponding to partitions derived from the invalid outputs are:

Table B.7 — Test cases for invalid output total mark

Test Case 19 20 21 22
Input (exam mark) 47.3 5 72 Null
Input (c/w mark) @@@ 5 23 Null
total mark (as calculated) - 10 95 -

Test Coverage Item TCOVER19 TCOVER20 TCOVER21 TCOVER22
Partition tested (output) FM’ ‘E’ ‘A+ ‘Null’
Partition (of total mark) - 0<=t<=15 90 <=t<=100 -

Exp. Output ‘FM’ ‘D’ ‘A ‘FM’

Depending on the implementation, it may be impossible to execute test cases that contain invalid input
values (e.g. test cases 2, 3, 5-12, and 17-22 in the example above). For instance, in the Ada programming
language, if the input variable is declared as a positive integer then it will not be possible to assign a
negative value to it. Despite this, it is still worthwhile considering all the test cases for completeness.

B.2.1.6.3 Option 4b: Derive Test Cases for Minimized Equivalence Partitioning (TD4)

It can be seen above that several of the test cases are similar, such as test cases 1 and 13, where the
main difference between them is the specific test coverage item chosen from the partition targeted. As

48 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

the test item has two inputs and one output, each test case actually “hits” three partitions; two input
partitions and one output partition. Thus it is possible to generate a smaller “minimized” test set that
still “hits” all the identified partitions by deriving test cases that are designed to exercise more than

one partition.

The following test suite of twelve test cases corresponds to the minimized equivalence partitioning
approach where each test case is designed to hit as many new partitions as possible rather than just one.

Table B.8 — Minimized test cases

Test Case 1 2 3 4

Input (exam mark) 60 50 35 19

Input (c/w mark) 20 16 10 8

total mark (as calculated) 80 66 45 27

Test Coverage Items TCOVER1, TCOVER1, TCOVER1, TCOVER1,

TCOVER?Z, TCOVER?Z, TCOVERZ, TCOVERZ,
TCOVER13 TCOVER14 TCOVER15 TCOVER16

Partition (of exam mark) 0<=e<=75 0<=e<=75 0<=e<=75 0<=e<=75

Partition (of ¢/w mark) 0<=c<=25 0<=c<=25 0<=c<=25 0<=c<=25

Partition (of total mark) 70 <=t<=100 50<=t<70 30<=t<50 0<=t<30

Exp. Output ‘A ‘B’ ‘c ‘D’

Table B.9 — Minimized test cases

Test Case 5 6 7 8

Input (exam mark) -10 93 60.5 Q

Input (c/w mark) -15 47 20.23 G

total mark (as calculated) -25 140 80.73 -

Test Coverage Items TCOVER3, TCOVER4, TCOVER?7, TCOVERS,
TCOVERS5, TCOVERS, TCOVERT10, TCOVER11,
TCOVER18 TCOVER17 TCOVER13, TCOVER19

TCOVER19
Partition (of exam mark) e<0 e>75 e =real number e = alphabetic
with fractional part
Partition (of c/w mark) c<0 c>25 ¢ =real number c = alphabetic
with fractional part
Partition (of total mark) t<0 t>100 70 <=t<=100 -
Exp. Output ‘FM’ ‘FM’ ‘FM’ ‘FM’
Table B.10 — Minimized test cases

Test Case 9 10 11 12

Input (exam mark) $ 5 72 ‘Null

Input (c/w mark) @ 23 ‘Null’

total mark (as calculated) - 10 95 -

© ISO/IEC 2015 - All rights reserved 49

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.10 (continued)

Test Case 9 10 11 12
Test Coverage Items TCOVERY, TCOVER1, TCOVERI1, TCOVER19,
TCOVER12, TCOVER?2, TCOVER2, TCOVER22
TCOVER19 TCOVER16, TCOVER13,
TCOVER20 TCOVER21
Partition (of exam mark) e = special char 0<=e<=75 0<=e<=75 -
Partition (of c/w mark) c = special char 0<=c<=25 0<=c<=25 -
Partition (of total mark) - 0<=t<=15 90 <=t<=100 -
Partition (of output) - ‘E’ ‘A+ ‘Null’
Exp. Output ‘FM’ ‘D’ ‘A ‘FM’

The one-to-one and minimized approaches represent two different approaches that can be used for
deriving test cases for equivalence partitioning. One-to-one test cases are particularly useful for testing
error conditions (i.e. when you are trying to force specific error messages to be output), for example,
to reduce the possibility that one error condition halts processing and/or masks or blocks other error
conditions. On the other hand, the disadvantage of the one-to-one approach is that it requires more test
cases and if this causes problems, a more minimalist approach can be used. The disadvantage of the
minimalist approach is that in the event of a test failure it can be difficult to identify the cause due to
several new partitions being exercised at the same time. Therefore, a common approach is to combine
the two approaches by applying minimized equivalence partitioning to design valid test cases and one-
to-one equivalence partitioning to design invalid test cases.

B.2.1.7 Step 5: Assemble Test Sets (TD5)

B.2.1.7.1 Options

If we assume that it is possible to automatically check an accept/reject response for each test case, but
that automation cannot handle fault messages (FM), then we can generate two test sets (TS); one for
manual testing and one for automated testing.

B.2.1.7.2 Option 5a: Assemble Test Set for One-to-One Equivalence Partitioning (TD5)
TS1: Manual Testing - TEST CASES 2,3,5,6,7,8,9,10, 11, 12,17, 18, 19, 22.

TS2: Automated Testing - TEST CASES 1, 4, 13, 14, 15, 16, 20, 21.
B.2.1.7.3 Option 5b: Assemble Test Set for Minimized Equivalence Partitioning (TD5)

TS3: Manual Testing - TEST CASES 5, 6,7, 8,9, 12.

TS4: Automated Testing - TEST CASES 1, 2, 3, 4, 10, 11.
B.2.1.8 Step 6: Derive Test Procedures (TD6)

B.2.1.8.1 Options

Test procedures for one-to-one and minimized equivalence partitioning can now be derived.

B.2.1.8.2 Option 6a: Derive Test Procedures for One-to-One Equivalence Partitioning (TD6)

For the manual test cases in test set TS1 for one-to-one equivalence partitioning, one test procedure
(TP) can be defined as follows:

50 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TP1: manual testing, covering all test cases in TS1, in the order specified in the test set.

For the automated test cases in one-to-one test set TS2, one test script could be written to execute all
test cases in the test set, as follows:

TP2: automated testing, covering all test cases in TS2, in the order specified in the test set.

For the automated test procedures TP2, automation code that implements the procedure would need to
be written in test automation scripts.

B.2.1.8.3 Option 6b: Derive Test Procedures for Minimized Equivalence Partitioning (TD6)
For the manual test cases in minimized test set TS3, one test procedure (TP) can be defined as follows:
TP3: manual testing, covering all test cases in TS3, in the order specified in the test set.

For the automated test cases in minimized test set TS4, one test script could be written to execute all
test cases in the test set, as follows:

TP4: automated testing, covering all test cases in TS4, in the order specified in the test set.

B.2.1.9 Equivalence Partition Coverage

Using the formula provided in 6.2.1 and the test coverage items derived above:

22
Coverage ,ne—to-one_Ep) = Tl 100%=100%

12
Coverage minimized_EP) = 12 x100% =100%

Thus, 100% equivalence partition coverage was achieved for both one-to-one and minimized
equivalence partitioning, enabling all twenty-two identified partitions to be exercised by at least one
test case. Lower coverage levels would be achieved if not all partitions identified are exercised. If not
all partitions are identified, then any coverage measure based on this incomplete set of partitions could
be misleading. However, since a different analysis of the test item might identify different equivalence
partitions, particularly for “invalid” values, coverage measures for equivalence partitioning must be
qualified as being for “identified” partitions.

B.2.2 Classification Tree Method

B.2.2.1 Introduction

The aim of the classification tree method is to derive test cases that cover the input partitions of the
testitem according to the chosen level of equivalence partition coverage. The classification tree method
extends this concept by constructing a classification tree that illustrates the partitions and assists the
tester with test design.

B.2.2.2 Specification

Consider the test basis for a test item travel_preference, which records the travel preferences of staff of an
Australian organisation who travel to major Australian capital cities for work purposes. Each set of travel
preferences is chosen through a series of radio buttons, which consist of the following input value choices:

Destination = Adelaide, Brisbane, Canberra, Darwin, Hobart, Melbourne, Perth, Sydney
Class = First Class, Business Class, Economy

Seat = Aisle, Window

© ISO/IEC 2015 - All rights reserved 51
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Meal Preference = diabetic, gluten free, lacto-ovo vegetarian, low fat/cholesterol, low lactose, vegan
vegetarian, standard

Any combination of one class from each classification will result in the message “Booking accepted” while
any other input will result in an error message stating “invalid input”. Staff do not have the option of
choosing no meal, thus this option is not supported in the example.

B.2.2.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1: travel_preference function

B.2.2.4 Step 2: Derive Test Conditions (TD2)

For classification tree testing, test conditions are identified by deriving classifications and classes for
each input parameter.

TCOND1: Destination (for FS1)
TCOND2: Class (for FS1)
TCOND3: Seat (for FS1)
TCOND4: Meal Preference (for FS1)

NOTE 1 Invalid test conditions could also be derived, though these are not demonstrated in this example.

Each of the test conditions in this example is a “classification” (i.e. a partition). “Classes” (i.e. sub-
partitions) and sub-classes could be derived for the Meal Preference class as follows:

Meal Preference (classification) = Vegetarian, Non-vegetarian
Vegetarian (class) = lacto-ovo, vegan
Non-vegetarian (class) = diabetic, gluten free, low fat / cholesterol, low lactose, standard

NOTE 2 The design of classifications and classes is often a subjective activity, thus other testers using this
technique can design classifications and classes that differ from those derived in this example.

A classification tree can now be developed for these test conditions.

travel_preference

| Class |

Adelaide Brisbane Canberra Darwin Hobart Melbourne PerthSydney First Business Economy Aisle Wmdow Vegetarian %{

lacto vegan diabetic gluten low fat/ low standard
free cholesterol lactose

| Seat | |Meal Preference

Figure B.4 — Classification tree example

B.2.2.5 Step 3: Derive Test Coverage Items (TD3)

Test coverage items are derived by choosing a combination approach and then creating combinations
of classes according to that approach. A “combination table” can be constructed under the classification

52 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

tree to demonstrate which classes are combined to form each test coverage item (e.g. see Figure B.5
below). The classes that are covered by each test coverage item are marked by a series of tokens (black
dots) that run horizontally underneath the classification tree.

If we assume that the chosen combination approach is “minimized”, in which each test coverage item
covers as many classes as possible until all classes are included in at least one test case, then the
following test coverage items shown in Figure B.5 below could be defined.

Classification Tree

o

travel_preference

| Class |

| Seat |

I

Adelaide Brisbane Canberra Darwin Hobart Melbourne PerthSydney First Business Economy Aisle Window|

/\

Meal Preference

lacto- vegan diabetic gluten low fat /
ovo free cholesterol lactose

low standard

N

.

Test Coverage Items

@@ N o s W

.
’

O

I++4

Figure B.5 — Example of a classification tree and corresponding combination table

In this example, all test coverage items cover all test conditions.

B.2.2.6 Step 4: Derive Test Cases (TD4)

A set of test cases can now be derived, where each test case covers exactly one test coverage item. Test
cases are derived by selecting one test coverage item at a time that has not already been covered by
a test case and populating it with test input values that cover the classes of that combination. This is
repeated until the required level of coverage is achieved. The expected result is derived by applying
the inputs to the test basis. In this particular case, any combination of valid inputs results in the status

“Booking accepted”.
Table B.11 — Test cases for classification tree testing
Test Input Values Expected Result Test Coverage
Case | Destination Class Seat Meal Preference Item
1 Adelaide First Aisle lacto-ovo Booking accepted TCOVER1
2 Brisbane Business | Window vegan Booking accepted TCOVER2
3 Canberra Economy Aisle diabetic Booking accepted TCOVER3
4 Darwin First Window gluten free Booking accepted TCOVER4
5 Hobart Business Aisle low fat/cholesterol | Booking accepted TCOVERS
6 Melbourne | Economy | Window low lactose Booking accepted TCOVER6

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

53

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.11 (continued)

Test [nput Values Expected Result Test Coverage
Case | Destination Class Seat Meal Preference Item

7 Perth First Aisle standard Booking accepted TCOVER7

8 Sydney Business | Window lacto-ovo Booking accepted TCOVERS

B.2.2.7 Step 5: Assemble Test Sets (TD5)

Since a small number of test cases were derived in this example, it may be decided that they can be
combined into the one test set.

TS1: TEST CASES 1,2,3,4,5,6,7,8

B.2.2.8 Step 6: Derive Test Procedures (TD6)
Since all test cases are in the one test set, we can derive one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

B.2.2.9 C(lassification Tree Method Coverage

Using the formula provided in 6.2.2 and the test coverage items derived above:
8 0, 0,
Coverage(classiﬁcation_tree_method) = g x100%=100%

Thus, 100% coverage of test coverage items for the classification tree method has been achieved.

B.2.3 Boundary Value Analysis

B.2.3.1 Introduction

The aim of boundary value analysis is to derive a set of test cases that cover the boundaries of each
input and output partition of the test item according to the chosen level of boundary value coverage. It
is based on the following premises. First, that the inputs and outputs of a test item can be partitioned
into classes that, according to the test basis for the test item, will be treated similarly by the test
item; second, that the members of some partitions can be ordered from lowest to highest with no
discontinuity; and third, that the boundaries of ordered contiguous partitions are historically an error
prone element of software development. Test cases are generated to exercise these boundaries.

The following is an example of three-value boundary testing with one-to-one test cases (see 5.2.3.2
and 5.2.3.3 respectively). In order to derive boundaries for a test item, the equivalence partitions of
the test item must be identified first, followed by the derivation of the boundary values from each
equivalence class.

B.2.3.2 Specification
Consider a test item, generate_grading, with the following test basis:

The component receives an exam mark (out of 75) and a coursework (c/w) mark (out of 25) as input, from
which it outputs a grade for the course in the range ‘A’ to ‘D’ The grade is generated by calculating the
overall mark, which is the sum of the exam and c¢/w marks, as follows:

greater than or equal to 70 - A
greater than or equal to 50, but less than 70 - ‘B’
54 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

greater than or equal to 30, but less than 50 - T
less than 30 - ‘D’

Where invalid input(s) are detected (e.g. a mark is outside its expected range) then a fault message (‘FM’) is
generated. All inputs are passed as integers.

B.2.3.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set (FS) needs to be defined:

FS1: generate_grading function
B.2.3.4 Step 2: Derive Test Conditions (TD2)

B.2.3.4.1 Sub-steps

For boundary value analysis, the test conditions are the boundaries (between partitions) that have
been chosen to be covered during testing. To identify the boundaries, equivalence partitions must
first be identified (see step 2a below), from which test conditions (the boundaries) can be derived (see
step 2b below).

B.2.3.4.2 Step 2a: Identify Equivalence Partitions
Equivalence partitions are identified from the valid and invalid inputs and outputs of the feature set FS1.
The following valid equivalence partitions (EP) can be identified for the inputs:

EP1: 0<=exam mark<=75 (for FS1)

EP2: 0 <=coursework mark <= 25 (for FS1)

The most obvious invalid equivalence partitions for the inputs can be identified as:

EP3: exam mark > 75 (for FS1)
EP4: exam mark<0 (for FS1)
EP5: coursework mark > 25 (for FS1)
EP6: coursework mark <0 (for FS1)

Although partitions EP3 to EP6 appear to be bounded on one side only, these partitions are in fact
bounded by implementation-dependent minimum and maximum values. For integers held in sixteen bits
these would be 32767 and -32768 respectively. Therefore, EP3 to EP6 can be more fully defined as follows:

EP3: 75 <exam mark <= 32767 (for FS1)
EP4: -32768 <=exam mark <0 (for FS1)
EP5: 25 < coursework mark <= 32767 (for FS1)
EP6: -32768 <= coursework mark < 0 (for FS1)

Partitioned ranges of values can be represented pictorially as follows:

© ISO/IEC 2015 - All rights reserved 55
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

-32768 -10 7576 32767

[N | [N |
exam _ N 0 < €xam_ -c ¢ exam -
mark mark mark

Figure B.6 — Equivalence partitions and boundaries of exam mark

And for the input, coursework mark, we get:
-32768 -10 25 26 32767

[| (W |
c/w 0_>F705C/W525 <« VN >25
mark< I mark mark g

Figure B.7 — Equivalence partitions and boundaries of coursework mark

Less obvious invalid input partitions could include any other input types not included in a valid
partition, for instance, non-integer inputs or perhaps non-numeric inputs. This aspect of equivalence
partitioning can be subjective and as such, each tester may identify different partitions that they feel
could be relevant. In order to be considered an equivalence partition, all values within a partition
must be expected to be treated in an equivalent manner by the test item. Thus we could generate the
following invalid equivalence partitions for the two input fields:

EP7: exam mark = real number with fractional part (for FS1)
EP8: exam mark = alphabetic (for FS1)
EP9: exam mark = special character (for FS1)
EP10: coursework mark = real number with fractional part (for FS1)
EP11: coursework mark = alphabetic (for FS1)
EP12: coursework mark = special character (for FS1)

Although equivalence classes EP7 to EP12 are possible, they have no identifiable boundaries and so no
test coverage items or test cases need to be derived for them for this technique.

Next, the partitions for the outputs are identified. The valid partitions are produced by considering
each of the valid outputs for the test item thus:

EP13: ‘A’isinduced by 70 <= total mark <= 100 (for FS1)
EP14: ‘B’isinduced by 50 <= total mark < 70 (for FS1)
EP15: ‘C’isinduced by 30 <= total mark < 50 (for FS1)
EP16: ‘D’isinduced by 0 <= total mark < 30 (for FS1)

EP17: ‘Fault Message’ (FM) is induced by total mark > 100 (for FS1)
EP18: ‘Fault Message’ (FM) isinduced by total mark <0 (for FS1)

where total mark = exam mark + coursework mark.

56 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Similar to the inputs, the output is bounded on either side by implementation-dependent maximum and
minimum values. Assuming the output is stored in integers held in sixteen bits from -32768 to 32767,
EP17 and EP18 could be redefined as follows.

EP17: 100 < total mark <= 32767 (for FS1)
EP18: -32768 <=total mark <0 (for FS1)

‘Fault Message’ is considered here as it is a specified output. The equivalence partitions and boundaries
for total mark are shown in Figure B.8:

-32768 FM 29 30 49 (cont.
total total total below)
o0 —pl 0< 30 4_30< otal 5o
mark mark ark
50 69 70 100 101 32767

(cont. ‘B’ A M’
from l total total
above 50 < tota 70 —pp 70 < tota otal 5 100

) ma mark ~ =100 mark

Figure B.8 — Equivalence partitions and boundaries of total mark

An invalid output would be any output from the test item other than one of the five specified. It may
be difficult to identify unspecified outputs, but obviously they must be considered as if we can cause
one then we have identified a defect with the test item, its test basis, or both. For this example three
unspecified outputs were identified (‘E’, ‘A+, and null’), but it is not possible to group these possible
outputs into ordered partitions from which boundaries can be identified and so no test cases are derived.

B.2.3.4.3 Step 2b: Derive Test Conditions

Once equivalence partitions for each input and output field have been identified, the test conditions,
which are the boundaries of each equivalence partition, can now be identified.

For the valid partitions of the input fields exam mark and coursework mark, the following test conditions
can be identified. Note that duplicate boundaries (e.g. the boundary “0” that lies on the edges of EP1 and
EP4) are only covered by one test condition.

TCOND1: exam mark = 0 (for EP1 and EP4)
TCOND2: exam mark = 75 (for EP1 and EP3)
TCOND3: coursework mark =0 (for EP2 and EP6)
TCOND4: coursework mark = 25 (for EP2 and EP5)

For the valid equivalence partitions for total mark, the following boundaries can be identified.

TCOND5: total mark =0 (for EP16 and EP18)
TCONDG6: total mark = 29 (for EP15 and EP16)
TCOND7: total mark = 30 (for EP15 and EP16)
TCONDS: total mark = 49 (for EP14 and EP15)
TCONDO9: total mark = 50 (for EP14 and EP15)
© ISO/IEC 2015 - All rights reserved 57

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOND10: total mark = 69 (for EP13 and EP14)
TCOND11: total mark = 70 (for EP13 and EP14)
TCOND12: total mark = 100 (for EP13 and EP17)

For the invalid partitions of the input fields, the following boundaries can be identified.

TCOND13: exam mark = 32767 (for EP3)
TCOND14: exam mark = -32768 (for EP4)
TCOND15: coursework mark = 32767 (for EP5)
TCOND16: coursework mark =-32768 (for EP6)

Finally, for the invalid partitions of total mark, the following boundaries can be identified.

TCOND17: total mark =101 (for EP17)
TCOND18: total mark = 32767 (for EP17)
TCOND19: total mark = -1 (for EP18)
TCOND20: total mark = -32768 (for EP18)

B.2.3.5 Step 3: Derive Test Coverage Items (TD3)

If 3-value boundary value analysis is applied, the test coverage items are the values that are on the
boundary of the equivalence partition, and either side of the boundary, using the smallest significant
distance away, as shown in Figure B.9:

boundary boundary
boundary boundary
values values

Figure B.9 — Test coverage items for 3-value boundary value analysis

NOTE1 Alternatively, 2-value boundary value analysis could also be performed, which would result in a
smaller number of test coverage items being derived, and correspondingly fewer test cases being derived.

For the boundaries that were identified in the previous step as test conditions, the following test
coverage items (TCOVER) can be identified. As we are using integers in this example, the test coverage
items are one either side of each boundary.

NOTE 2 If the example involved numerical data types involving decimals (e.g. real numbers), then the test
coverage items for boundary value analysis would be the smallest significant value for the data type under
consideration.

TCOVERT1: exam mark =-1 (from TCOND1)
TCOVERZ: exam mark = 0 (from TCOND1)
TCOVERS3: exam mark =1 (from TCOND1)
TCOVER4: exam mark = 74 (from TCOND2)
58 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOVERS: exam mark = 75 (from TCOND2)
TCOVERG6: exam mark = 76 (from TCOND2)
TCOVER?7: coursework mark = -1 (from TCOND3)
TCOVERS: coursework mark =0 (from TCOND3)
TCOVERO: coursework mark =1 (from TCOND3)
TCOVER10: coursework mark = 24 (from TCOND4)
TCOVER11: coursework mark = 25 (from TCOND4)
TCOVER12: coursework mark = 26 (from TCOND4)

For the output fields, the following test coverage items can be identified:

TCOVER13: total mark = -1 (from TCONDS5 & TCOND19)
TCOVER14: total mark =0 (from TCONDS5 & TCOND19)
TCOVER15: total mark =1 (from TCONDS)

TCOVER16: total mark = 28 (from TCOND®6)

TCOVER17: total mark = 29 (from TCOND6 & TCOND7)
TCOVER18: total mark = 30 (from TCOND6 & TCOND7)
TCOVER19: total mark = 31 (from TCOND7)

TCOVER20: total mark = 48 (from TCONDS8)

TCOVER21: total mark = 49 (from TCOND8 & TCOND9)
TCOVER22: total mark =50 (from TCOND8 & TCOND9)
TCOVER23: total mark = 51 (from TCOND?9)

TCOVER24: total mark = 68 (from TCOND10)

TCOVER25: total mark = 69 (from TCOND10 & TCOND11)
TCOVER26: total mark = 70 (from TCOND10 & TCOND11)
TCOVER27: total mark =71 (from TCOND11)

TCOVER28: total mark = 99 (from TCOND12)

TCOVER29: total mark = 100 (from TCOND12 & TCOND17)
TCOVER30: total mark =101 (from TCOND12 & TCOND17)

Note that equivalence classes EP7 to EP12 have not been covered by any test coverage items, since they
have no identifiable boundaries (as stated in the previous step).

For the remaining invalid partitions that were identified (i.e. for the boundaries of test conditions
TCOND13 to TCOND20 that have not yet been covered), the following invalid test coverage items can
be identified:

TCOVER31: exam mark = 32766 (from TCOND13)

© ISO/IEC 2015 - All rights reserved 59
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOVER32: exam mark = 32767 (from TCOND13)
TCOVER33: exam mark = 32768 (from TCOND13)
TCOVER34: exam mark =-32769 (from TCOND14)
TCOVER35: exam mark =-32768 (from TCOND14)
TCOVER36: exam mark = -32767 (from TCOND14)
TCOVER37: coursework mark = 32766 (from TCOND15)
TCOVER38: coursework mark = 32767 (from TCOND15)
TCOVER39: coursework mark = 32768 (from TCOND15)
TCOVER40: coursework mark =-32769 (from TCOND16)
TCOVER41: coursework mark =-32768 (from TCOND16)
TCOVER42: coursework mark =-32767 (from TCOND16)
TCOVER43: total mark = 102 (from TCOND17)
TCOVER44: total mark = 32766 (from TCOND18)
TCOVER45: total mark = 32767 (from TCOND18)
TCOVER46: total mark = 32768 (from TCOND18)
TCOVER47: total mark = -2 (from TCOND19)
TCOVER48: total mark =-32769 (from TCOND20)
TCOVER49: total mark = -32768 (from TCOND20)
TCOVER50: total mark = -32767 (from TCOND20)

B.2.3.6 Step 4: Derive Test Cases (TD4)

Test cases can now be derived to cover the required percentage of test coverage items that were
identified in the previous step. For example, if 100% boundary coverage is required, then test cases
must be derived to cover all test coverage items. One-to-one boundary value analysis could be used
to derive one test case per test coverage item, or minimized boundary value analysis could be used to
derive the minimum number of test cases required to cover all test coverage items.

The preconditions of all test cases for the generate_grading function are the same: the application is
ready to take the inputs of exam and coursework mark.

If we assume that 100% boundary coverage is required and that one-to-one boundary value analysis
is used to derive test cases, then six test cases can be derived for the input exam mark, as shown in
Table B.12. Each test case is derived as follows: first, selecting one boundary value (test coverage item)
for inclusion in each test case; secondly, allocating an arbitrary valid value to all other inputs present in
the test case; and third, determining the expected result of the test.

Table B.12 — Boundary values for exam mark

Test Case 1 2 3 4 5 6
Input (exam mark) -1 0 1 74 75 76
Input (c/w mark) 15 15 15 15 15 15
60 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.12 (continued)

Test Case 1 2 3 4 5 6
total mark (as calculated) 14 15 16 89 90 91
Test Coverage Item 1 2 3 4 5 6
Boundary tested (exam mark) 0 75

Exp. Output ™ | » | D> w | ow | w

Note that the input coursework (c/w) mark has been set to an arbitrary valid value of 15, as these test
cases are focused on exercising the input exam mark boundaries.

And the test cases derived from the input coursework mark are:

Table B.13 — Boundary values for coursework mark

Test Case 7 8 9 10 11 12
Input (exam mark) 40 40 40 40 40 40
Input (c/w mark) -1 0 1 24 25 26
total mark (as calculated) 39 40 41 64 65 66
Test Coverage Item 7 8 9 10 11 12
Boundary tested (c/w mark) 0 25

Exp. Output W™ | ¢ | ® | B | W

Note that the input exam mark has been set to an arbitrary valid value of 40.

The test cases derived from the outputs are:

Table B.14 — Test cases for total mark

Test Case 13 14 15 16 17 18 19
Input (exam mark) -1 0 0 28 29 15 6
Input (c/w mark) 0 0 1 0 0 15 25
total mark (as calculated) -1 0 1 28 29 30 31
Test Coverage Item 13 14 15 16 17 18 19
Boundary tested (total mark) 0 29 29,30 30
Exp. Output ™ | v | | | D> | 0%

Table B.15 — Test cases for total mark

Test Case 20 21 22 23 24 25 26 27
Input (exam mark) 23 24 50 26 48 49 45 71
Input (c/w mark) 25 25 0 25 20 20 25 0
Total Mark (as calculated) 48 49 50 51 68 69 70 71
Test Coverage Item 20 21 22 23 24 25 26 27
Boundary tested (total mark) 49 49,50 50 69 69,70 70
Exp. Output ‘C ‘C ‘B’ ‘B’ ‘B’ ‘B’ ‘A ‘A
© ISO/IEC 2015 - All rights reserved 61

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.16 — Test cases for total mark

Test Case 28 29 30
Input (exam mark) 74 75 75
Input (c/w mark) 25 25 26
Total Mark (as calculated) 99 100 101
Test Coverage Item 28 29 30
Boundary tested (total mark) 100 100, 101
Exp. Output ‘A ‘A FM’

The input values of exam mark and coursework mark have been derived from total mark, which is their
sum.

The following test cases are required to cover the remaining test coverage items TCOVER31 to TCOVERS50,
which were identified outside the valid boundaries and at the extreme edges of equivalence classes:

Table B.17 — Test cases for exam mark

Test Case 31 32 33 34 35 36
Input (exam mark) 32766 32767 32768 -32769 | -32768 | -32767
Input (c/w mark) 15 15 15 15 15 15
total mark (as calculated) 32781 32782 32783 -32754 | -32753 | -32752
Test Coverage Item 31 32 33 34 35 36
Boundary tested (exam mark) 32767 -32768

Exp. Output FM’ ‘FM’ FM’ FM’ FM’ FM’

Table B.18 — Test cases for coursework mark

Test Case 37 38 39 40 41 42
Input (exam mark) 40 40 40 40 40 40
Input (c/w mark) 32766 32767 32768 -32769 | -32768 | -32767
total mark (as calculated) 32806 32807 32808 -32729 -32728 -32727
Test Coverage Item 37 38 39 40 41 42
Boundary tested (c/w mark) 32767 -32768

Exp. Output FM’ ‘FM’ ‘FM’ ‘FM’ FM’ FM’

Table B.19 — Test cases for total mark

Test Case 43 44 45 46 47 48 49 50
Input (exam mark) 75 16383 | 32767 1 -1 0 -16384 | -32766
Input (c/w mark) 27 16383 0 32767 -1 -32769 | -16384 -1
Total Mark (as calculated) 102 32766 | 32767 | 32768 -2 -32769 | -32768 | -32767
Test Coverage Item 43 44 45 46 47 48 49 50
Boundary tested (total mark) 101 32767 1 -32768

Exp. Output ™ | FM | FM | M | FM | FM | FM | FW

It should be noted that when invalid input values are used (as above, in test cases 1, 6, 7, 12, 13, and
30-50) it may, depending on the implementation, be impossible to actually execute the test case. For
instance, in the Ada programming language, if the input variable is declared as a positive integer then it

62 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

will not be possible to assign a negative value to it. Despite this, it is still worthwhile considering all the
test cases for completeness.

The above test case suite achieves 100% boundary value coverage for 3-value boundary value analysis
as it enables all identified test coverage items to be exercised by at least one test case. Lower levels
of coverage would be achieved if some of the identified boundaries were not exercised. If some of the
boundaries are not identified, then any coverage measure based on this incomplete set of boundaries
would be misleading.

B.2.3.7 Step 5: Assemble Test Sets (TD5)

If we assume that it is possible to automatically check an accept/reject response for each valid test case,
but that automation cannot handle fault messages (FM) that are generated by invalid test cases, then
we can generate two test sets (TS); one for manual testing and one for automated testing.

TS1: Manual Testing - TEST CASES 1, 6, 7,12, 13, 30 to 50.

TS2: Automated Testing - TEST CASES 2, 3, 4,5, 8,9, 10, 11 and 14 to 29.

B.2.3.8 Step 6: Derive Test Procedures (TD6)
For the manual test cases in test set TS1, one test procedure (TP) can be defined as follows:
TP1: manual testing, covering all test cases in TS1, in the order specified in the test set.

For the automated test cases in test set TS2, one test script could be written to execute all test cases in
the test set, as follows:

TP2: automated testing, covering all test cases in TS2, in the order specified in the test set.

For the automated test procedure TP2, automation code to execute the procedure would need to be
written.

B.2.3.9 Boundary Value Analysis Coverage

Using the formula provided in 6.2.3 and the test coverage items derived above:
50 0 0
Coverage[boundary_value_analysis) = 50 x100%=100%

Thus, 100% coverage of test coverage items for boundary value analysis has been achieved.

B.2.4 Syntax Testing

B.2.4.1 Introduction

The aim of syntax testing is to derive a set of test cases that cover the input syntax of the test item
according to the chosen level of input syntax coverage. This technique is based upon an analysis of the
test basis of the test item to model its behaviour by means of a description of the input via its syntax.
We illustrate the technique by means of a worked example. The technique is only effective to the extent
that the syntax as defined corresponds to the required syntax.

B.2.4.2 Specification

Consider a test item that simply checks whether an input float_in conforms to the syntax of a floating
point number, float (defined below). The test item outputs check_res, which takes the form “valid” or
“invalid” dependent on the result of its check.

Here is a representation of the syntax for the floating point number, float in Backus Naur Form (BNF):

© ISO/IEC 2015 - All rights reserved 63
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

float = int “e” int

int — [\\+u‘n_n] nat

nat = {dig}

dig _ NQU | R | R G | B G | T g |

Terminals are shown in quotation marks; these are the most elementary parts of the syntax - the actual
characters that make up the input to the test item. | separates alternatives. [] surrounds an optional
item, that is, one for which nothing is an alternative. { } surrounds an item which may be iterated one
or more times.

B.2.4.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature needs to be defined:

FS1: float in

B.2.4.4 Step 2: Derive Test Conditions (TD2)

The first step is to derive the test conditions from the syntax. Test conditions may be defined as the
input parameters in the syntax, as follows:

TCOND1 float = int “e” int

TCOND?2 int = [“+”|”-"] nat

TCOND3 nat = {dig}

TCOND4 dig =“0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9”"

B.2.4.5 Step 3: Derive Test Coverage Items (TD3)

The test coverage items for syntax testing are the “options” (valid test coverage items) and “mutations”
(invalid test coverage items) of the defined syntax (see 5.2.4.2 for definitions of “options” and
“mutations”).

Valid test coverage items can be derived for the elements on the right hand side of the BNF definition.

“«w,n

There are three test coverage items that can be derived for the “+” and “-” signs of TCOND2:

TCOVERT1: there is no “+” or “-” sign (for TCOND2 & TCOND1)
TCOVERZ2: there is a “+” sign (for TCOND2 & TCOND1)
TCOVERS3: there is a “-” sign (for TCOND2 & TCOND1)

«,n

NOTE1 Separate test coverage items could be derived for the first and second instances of “+” and “-"if required.
nat has two test coverage items:

TCOVER4: nat is a single digit number (for TCOND3 & TCOND?2)

TCOVERS: nat is a multiple digit number (for TCOND3 & TCONDZ2)
NOTE 2 Separate test coverage items could be derived for the first and second instances of nat if required.

dig has ten options:

TCOVERG6: integerisa “0” (for TCOND4 & TCOND3)
TCOVER?7: integerisa “1” (for TCOND4 & TCOND3)
64 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOVERS: integer isa “2” (for TCOND4 & TCOND3)
TCOVERO: integerisa “3” (for TCOND4 & TCOND3)
TCOVER10: integer is a “4” (for TCOND4 & TCOND3)
TCOVER11: integerisa “5” (for TCOND4 & TCOND3)
TCOVER12: integer isa “6” (for TCOND4 & TCOND3)
TCOVER13: integerisa “7” (for TCOND4 & TCOND3)
TCOVER14: integer is an “8” (for TCOND4 & TCOND3)
TCOVER15: integerisa“9” (for TCOND4 & TCOND3)

There are thus fifteen valid test coverage items that can be defined.

The first step in deriving invalid test coverage items is to construct a checklist of generic mutations that
can be applied to the test conditions. A possible checklist is:

m1. introduce an invalid value for an element;

m2. substitute an element with another defined element;
m3. miss out a defined element;

m4. add an extra element.

NOTE 3 Other types of syntax mutation could be used, depending on the types of defects testing is
intending to target.

These generic mutations are applied to the individual elements of the syntax to yield specific mutations.

TCOVER16: apply m1 to first“int” (for TCOND1)
TCOVER17: apply m1 to “e” (for TCOND1)
TCOVER18: apply m1 to second “int” (for TCOND1)
TCOVER19: apply m1 to “[“+"|"-"1" (for TCOND?2)
TCOVERZ20: apply m1l to “nat” (for TCONDZ2)
TCOVER21: apply m2 to substitute “e” for first “int” (for TCOND1)
TCOVER22: apply m2 to substitute “[“+”|"="]" first “int” (for TCOND 1 & TCOND?2)
TCOVER23: apply m2 to substitute first “int” for “e” (for TCOND1)
TCOVER24: apply m2 to substitute “[“+”|"-"]" for “e” (for TCOND1 & TCOND2)
TCOVER25: apply m2 to substitute “e” for second “int” (for TCOND1)
TCOVER26: apply m2 to substitute “[“+”|”"-"1" for second “int” (for TCOND1)
TCOVER27: apply m2 to substitute “e” for “[“+”|"-"]" (for TCOND1 & TCOND?2)
TCOVER28: apply m2 to substitute “e” for “nat” (for TCOND1 & TCOND2)
TCOVER29: apply m2 to substitute “[“+”|"-"]" for “nat” (for TCOND1 & TCOND2)
© ISO/IEC 2015 - All rights reserved 65

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOVER30: apply m3 to first “int” (for TCOND1)
TCOVER31: apply m3to “e” (for TCOND1)
TCOVER32: apply m3 to second “int” (for TCOND1)
TCOVER33: apply m4 to add element before first “int” (for TCOND1)
TCOVER34: apply m4 to add element before “e” (for TCOND1)
TCOVER35: apply m4 to add element before second “int” (for TCOND1)
TCOVER36: apply m4 to add element after second “int” (for TCOND1)

TCOVER37: apply m4 to add element before first “int” and “[“+”|”-"]" (for TCOND1 & TCOND?2)
TCOVER38: apply m4 to add element between “[“+”|”-"]” and first “int” (for TCOND1 & TCOND2)
TCOVER39: apply m4 to add element between first “int” and “e” (for TCOND1)

[“+”|”-"] has been treated as a single element because the mutation of individual optional items
separately does not create test cases with invalid syntax (using these generic mutations).

B.2.4.6 Step 4: Derive Test Cases (TD4)
Valid test cases are derived by selecting one or more options for inclusion in the current test case,

identifying inputs to exercise the option(s) and determining the expected result (in this case, ‘check_
res’). The resulting valid test cases are:

Table B.20 — Valid test cases for syntax testing

Test Case Input ‘float_in’ Test Coverage Item Expected Result ‘check_res’
TC1 3e2 TCOVER1 ‘valid’
TC 2 +2e+5 TCOVER2 ‘valid’
TC3 -6e-7 TCOVER3 ‘valid’
TC 4 6e-2 TCOVER4 ‘valid’
TC5 1234567890e3 TCOVERS ‘valid’
TC6 0e0 TCOVER6 ‘valid’
TC7 lel TCOVER7 ‘valid’
TC8 2e2 TCOVERS8 ‘valid’
TCO 3e3 TCOVER9 ‘valid’
TC 10 4e4 TCOVER10 ‘valid’
TC11 5e5 TCOVER11 ‘valid’

TC12 6e6 TCOVER12 ‘valid’
TC13 7e7 TCOVER13 ‘valid’
TC 14 8e8 TCOVER14 ‘valid’
TC15 9e9 TCOVER15 ‘valid’

This is by no means a minimal test set to exercise the 15 options (it can be reduced to just three test
cases, for example, 2, 3 and 5 above), and some test cases will exercise more options than the single
one listed in the “Test Coverage Item” column. Each option has been treated separately here to aid
understanding of their derivation. This approach may also contribute to the ease with which the causes
of failures are located.

66 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Invalid test cases are derived by selecting one or more mutations for inclusion in the current test case,
identifying inputs to exercise the mutation(s) and determining the expected result (in this case, ‘check_
res’). The resulting invalid test cases are:

Table B.21 — Invalid test cases for syntax testing

Test Case Input ‘float_in’ Mutation Test Coverage Item Expected Result ‘check_res’
TC 16 xe0 m1l TCOVER16 ‘invalid’
TC17 0x0 m1l TCOVER17 ‘invalid’
TC 18 Oex m1 TCOVER18 ‘invalid’
TC 19 x0e0 m1 TCOVER19 ‘invalid’
TC 20 +xe0 m1l TCOVER20 ‘invalid’
TC21 eel m2 TCOVER21 ‘invalid’
TC22 +e0 m?2 TCOVER22 ‘invalid’
TC 23 000 m2 TCOVER23 ‘invalid’
TC 24 0+0 m2 TCOVER24 ‘invalid’
TC 25 Oee m2 TCOVER25 ‘invalid’
TC 26 Oe+ m2 TCOVER26 ‘invalid’
TC 27 e0e0 m2 TCOVER27 ‘invalid’
TC 28 +ee(m2 TCOVER28 ‘invalid’
TC 29 ++e0 m2 TCOVER29 ‘invalid’
TC 30 el m3 TCOVER30 ‘invalid’
TC31 00 m3 TCOVER31 ‘invalid’
TC 32 Oe m3 TCOVER32 ‘invalid’
TC 33 y0e0 m4 TCOVER33 ‘invalid’
TC 34 Oye0 m4 TCOVER34 ‘invalid’
TC 35 Oey0 m4 TCOVER35 ‘invalid’
TC 36 0eOy m4 TCOVER36 ‘invalid’
TC37 y+0e0 m4 TCOVER37 ‘invalid’
TC 38 +y0e0 m4 TCOVER38 ‘invalid’
TC 39 +0ye0 m4 TCOVER39 ‘invalid’

Some of the mutations are indistinguishable from correctly formed expansions and these have been
discarded. For example, the generic mutation m2 (substitute TCOND2 for TCOND4) generates correct
syntax as m2 is “substitute an element with another defined element” and TCOND2 and TCOND4 are
the same (int).

Some of the remaining mutations are indistinguishable from each other and these are covered by a
single test case. For example, applying the generic mutation m1 (“introduce an invalid value for an
element”) by replacing TCOND4, which should be an integer, with “+” creates the form “Oe+”. This is the
same input as generated for test case 26 from Table B.21.

Many more test cases can be created by making different choices when using single mutations, or
combining mutations.

B.2.4.7 Step 5: Assemble Test Sets (TD5)
A decision may be made to assemble one test set for valid test cases and one for invalid test cases:

TS1: TESTCASE1,2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15

© ISO/IEC 2015 - All rights reserved 67
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TS2: TEST CASE 16, 17, 18, 19, 20, 21, 22, 23, 24, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,38, 39

B.2.4.8 Step 6: Derive Test Procedures (TD6)

All test cases could be assembled into the one test procedure, starting with the valid test cases, and
ending with the invalid test cases.

TP1: covering all test cases in TS1, followed by all test cases in TSZ, in the order specified in the
test sets.

B.2.4.9 Syntax Testing Coverage

As stated in 6.2.4, there is no approach for calculating test coverage item coverage for syntax testing.

B.2.5 Combinatorial Test Design Techniques

B.2.5.1 Introduction

The aim of combinatorial testing is to reduce the cost of testing by deriving a small (possibly
minimal) number of test cases that cover the chosen set of parameters and input values of the test
item. Combinatorial test design techniques provide the ability to derive test cases from input values
that have previously been selected, such as through the application of other specification-based test
design techniques like equivalence partitioning or boundary value analysis. Each technique will be
demonstrated through the application of one example. Since each technique shares common steps in
identifying feature sets and deriving test conditions, these steps are demonstrated once below for all
techniques, and this is then followed by the steps of deriving test coverage items and test cases that are
unique to each combinatorial technique.

B.2.5.2 Specification

Consider the test basis for a test item travel_preference, which records the travel preferences of
staff members of an organisation that travel to major capital cities for work purposes. Each set
of travel preferences is chosen through three sets of radio buttons, which consist of the following
input value choices:

Destination = Paris, London, Sydney
Class = First, Business, Economy
Seat = Aisle, Window

If avalid input combination is provided to the program it will output “Accept”, otherwise it will output “Reject”.

B.2.5.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set to be defined:

FS1: travel_preference function

B.2.5.4 Step 2: Derive Test Conditions (TD2)

Every combinatorial technique shares a common approach to deriving test conditions. That is, test
conditions correspond to each parameter (P) of the test item taking on one specific value (V), resulting
in one P-V pair. This is repeated until all parameters are paired with their corresponding values. For the
example above, this results in the following P-V pairs:

TCOND1: Destination - Paris (for FS1)

68 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

TCOND2:
TCOND3:
TCOND4:
TCONDS5:
TCONDG6:
TCOND7:
TCONDS:

Destination - London
Destination - Sydney
Class - First

Class - Business
Class - Economy
Seat - Aisle

Seat - Window

B.2.5.5 All Combinations

(for FS1)
(for FS1)
(for FS1)
(for FS1)
(for FS1)
(for FS1)
(for FS1)

B.2.5.5.1 Step 3: Derive Test Coverage Items (TD3)

ISO/IEC/IEEE 29119-4:2015(E)

In all combinations testing, the test coverage items are the unique combinations of P-V pairs, made up
of one P-V pair for each test item parameter. These P-V pairs were earlier identified as test conditions.

TCOVERTI:
TCOVERZ:
TCOVERS3:
TCOVER4:
TCOVERS:
TCOVERG6:
TCOVER?7:
TCOVERS:
TCOVERGO:

TCOVER10:
TCOVER11:
TCOVER12:
TCOVER13:
TCOVER14:
TCOVER15:
TCOVER16:
TCOVER17:
TCOVER18:

Destination - Paris,
Destination - Paris,
Destination - Paris,
Destination - Paris,
Destination - Paris,
Destination - Paris,
Destination - London,
Destination - London,
Destination - London,
Destination - London,
Destination - London,
Destination - London,
Destination - Sydney,
Destination - Sydney,
Destination - Sydney,
Destination - Sydney,
Destination - Sydney,

Destination - Sydney,

Class - First,
Class - First,
Class - Business,
Class - Business,
Class - Economy,
Class - Economy,
Class - First,
Class - First,
Class - Business,
Class - Business,
Class - Economy,
Class - Economy,
Class - First,
Class - First,
Class - Business,
Class - Business,
Class - Economy,

Class - Economy,

B.2.5.5.2 Step 4: Derive Test Cases (TD4)

Seat - Aisle
Seat - Window
Seat - Aisle
Seat - Window
Seat - Aisle
Seat - Window
Seat - Aisle
Seat - Window
Seat - Aisle
Seat - Window
Seat - Aisle
Seat - Window
Seat - Aisle
Seat - Window
Seat - Aisle
Seat - Window
Seat - Aisle

Seat - Window

(for TCOND 1, 4, 7)
(for TCOND 1, 4, 8)
(for TCOND 1, 5,7)
(for TCOND 1, 5, 8)
(for TCOND 1, 6, 7)
(for TCOND 1, 6, 8)
(for TCOND 2, 4, 7)
(for TCOND 2, 4, 8)
(for TCOND 2, 5, 7)
(for TCOND 2, 5, 8)
(for TCOND 2, 6, 7)
(for TCOND 2, 6, 8)
(for TCOND 3, 4, 7)
(for TCOND 3, 4, 8)
(for TCOND 3,5, 7)
(for TCOND 3,5, 8)
(for TCOND 3, 6, 7)
(for TCOND 3, 6, 8)

Test cases are derived by selecting one P-V pair and combining it with every other P-V pair from all other
parameters (where each combination creates exactly one test case), identifying arbitrary valid values

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

69

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

to exercise any other input variable required by the test case, determining the expected result and
repeating until the required coverage is achieved. In this example, this results in the following test cases:

Table B.22 — Test cases for all combinations testing

Input Values E
xpected Test Coverage Item
Test Case # Destination Class Seat Result
1 Paris First Aisle Accept TCOVER1
2 Paris First Window Accept TCOVER2
3 Paris Business Aisle Accept TCOVER3
4 Paris Business Window Accept TCOVER4
5 Paris Economy Aisle Accept TCOVERS
6 Paris Economy Window Accept TCOVER6
7 London First Aisle Accept TCOVER7
8 London First Window Accept TCOVERS8
9 London Business Aisle Accept TCOVER9
10 London Business Window Accept TCOVER10
11 London Economy Aisle Accept TCOVER11
12 London Economy Window Accept TCOVER12
13 Sydney First Aisle Accept TCOVER13
14 Sydney First Window Accept TCOVER14
15 Sydney Business Aisle Accept TCOVER15
16 Sydney Business Window Accept TCOVER16
17 Sydney Economy Aisle Accept TCOVER17
18 Sydney Economy Window Accept TCOVER18

B.2.5.5.3 Step 5: Assemble Test Sets (TD5)

It may be decided that all test cases will be divided into those that cover aisle seats and window seats.
This would result in the following test sets.

TS1: TEST CASES 1, 3,5,7,9,11,13,15,17

TS2: TEST CASES 2,4, 6, 8,10, 12, 14, 16, 18

B.2.5.5.4 Step 6: Derive Test Procedures (TD6)
Since each test setis going to be executed by a different tester, they can be divided into two test procedures.
TP1: covering all test cases in TS1, in the order specified in the test set.

TP2: covering all test cases in TS2, in the order specified in the test set.

B.2.5.5.5 All Combinations Testing Coverage

Using the formula provided in 6.2.5.1 and the test coverage items derived above:

18
Coverageqj1_combinations) = 18 x100%=100%
Thus, 100% coverage of test coverage items for all-combinations testing has been achieved.
70 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

B.2.5.6 Pair-wise Testing

B.2.5.6.1 Step 3: Derive Test Coverage Items (TD3)

In pair-wise testing, test coverage items are identified as the unique pairs of P-V pairs for different
parameters. For the travel_preference example, the following test coverage items can be defined:

TCOVER1: Paris, First (for TCOND1, TCOND4)
TCOVER2: Paris, Business (for TCOND1, TCONDS5)
TCOVER3: Paris, Economy (for TCOND1, TCONDG®6)
TCOVER4: London, First (for TCOND2, TCOND4)
TCOVERS5: London, Business (for TCOND2, TCOND5)
TCOVER6: London, Economy (for TCOND2, TCOND®6)
TCOVER7: Sydney, First (for TCOND3, TCOND4)
TCOVERS8: Sydney, Business (for TCOND3, TCONDS5)
TCOVER9: Sydney, Economy (for TCOND3, TCOND®6)
TCOVER10: Paris, Aisle (for TCOND1, TCOND7)
TCOVER11: Paris, Window (for TCOND1, TCONDS)
TCOVER12: London, Aisle (for TCOND2, TCOND7)
TCOVER13: London, Window (for TCOND2, TCONDS)
TCOVER14: Sydney, Aisle (for TCOND3, TCOND7)
TCOVER15: Sydney, Window (for TCOND3, TCONDS8)
TCOVER16: First, Aisle (for TCOND4, TCOND?7)
TCOVER17: First, Window (for TCOND4, TCONDS)
TCOVER18: Business, Aisle (for TCONDS5, TCOND7)
TCOVER19: Business, Window (for TCONDS5, TCONDS8)
TCOVER20: Economy, Aisle (for TCOND6, TCOND7)
TCOVER21: Economy, Window (for TCOND6, TCONDS)

B.2.5.6.2 Step 4: Derive Test Cases (TD4)

Test cases are derived by selecting one or more unique pairs of P-V pairs (test coverage items) for
inclusion in the current test case, selecting arbitrary valid values for any other input variable required
by the test case, determining the expected result of the test and repeating until all P-V pairs with
different parameters are included in at least one test case. In this example, three P-V pairs can be
included in all test cases.

© ISO/IEC 2015 - All rights reserved 71
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.23 — Test cases pair-wise testing

Test Case Input Values Expected Test Coverage Items

Destination Class Seat Result

1 Paris First Aisle Accept TCOVER1, TCOVER10, TCOVER16
2 Paris Business Window Accept TCOVERZ2, TCOVER11, TCOVER19
3 Paris Economy Aisle Accept TCOVER3, TCOVER10, TCOVER20
4 London First Aisle Accept TCOVER4, TCOVER12, TCOVER16
5 London Business Window Accept TCOVERS5, TCOVER13, TCOVER19
6 London Economy Aisle Accept TCOVER6, TCOVER12, TCOVER20
7 Sydney First Window Accept TCOVER7, TCOVER15, TCOVER17
8 Sydney Business Aisle Accept TCOVERS, TCOVER14, TCOVER18
9 Sydney Economy Window Accept TCOVERY9, TCOVER15, TCOVER21

B.2.5.6.3 Step 5: Assemble Test Sets (TD5)

It may be decided since there are a relatively small number of test cases, that they can be combined into
the one test set, as follows.

TS1: TEST CASES 1,2,3,4,5,6,7,8,9

B.2.5.6.4 Step 6: Derive Test Procedures (TD6)
Since there is only one test set, it can be combined into the one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

B.2.5.6.5 Pair-wise Testing Coverage

Using the formula provided in 6.2.5.2 and the test coverage items derived above:
Coverage 21 x100% =100%
. . = — 0 = 0
(pairwise) 21
Thus, 100% coverage of test coverage items for pair-wise testing has been achieved.
B.2.5.7 Each Choice Testing

B.2.5.7.1 Step 3: Derive Test Coverage Items (TD3)

In each choice (or 1-wise) testing, the test coverage items are the set of P-V pairs. Thus, for the travel_
preference example, the following test coverage items can be defined:

TCOVER1: Destination - Paris (for TCOND1)
TCOVER2: Destination - London (for TCONDZ2)
TCOVER3: Destination - Sydney (for TCOND3)
TCOVER4: Class - First (for TCOND4)
TCOVERS5: Class - Business (for TCONDS)
TCOVER6: Class - Economy (for TCOND®6)
72 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOVER7: Seat - Aisle (for TCOND?7)

TCOVERS8: Seat- Window (for TCONDS)

B.2.5.7.2 Step 4: Derive Test Cases (TD4)

Each choice test cases are derived by selecting one or more P-V pairs for inclusion in the current test case,
selecting arbitrary valid values for any other input variables required by the test case, determining the
expected result and repeating until all P-V pairs are included in at least one test case. For this example,
only three test cases are required:

Table B.24 — Test cases for each choice testing

Test Case Input Values Expected Test Coverage Items
Destination Class Seat Result
1 Paris First Aisle Accept TCOVER1, TCOVER4, TCOVER7
2 London Business Window Accept TCOVER2, TCOVERS5, TCOVERS8
3 Sydney Economy Aisle Accept TCOVER3, TCOVER6, TCOVER7

Note that other test cases could be derived that would also achieve the required level of coverage.

B.2.5.7.3 Step 5: Assemble Test Sets (TD5)

Since a very small number of test cases derived in this example, it may be decided that they be combined
into the one test set.

TS1: TEST CASES 1, 2,3

B.2.5.7.4 Step 6: Derive Test Procedures (TD6)
Since all test cases are in the one test set, we can derive one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

B.2.5.7.5 Each Choice Testing Coverage

Using the formula provided in 6.2.5.3 and the test coverage items derived above:

8
Coverage each_choice) = gx 100%=100%

Thus, 100% coverage of test coverage items for each choice testing has been achieved.
B.2.5.8 Base Choice Testing

B.2.5.8.1 Step 3: Derive Test Coverage Items (TD3)

Test coverage items for base choice testing are chosen by selecting a “base choice” value for each
parameter. For example, the base choice could be chosen from the operational profile, from the main
path in use case testing or from the test coverage items that are derived during equivalence partitioning.
In this example, the operational profile may indicate that the following input values should be chosen as
the base choice:

TCOVER1: Seat - Window (covers TCONDZ,

TCOND6 & TCONDS)

Destination - London, Class - Economy,

© ISO/IEC 2015 - All rights reserved 73
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

The remaining test coverage items are derived by identifying all remaining P-V pairs:

TCOVER2 Destination - Paris, Class - Economy, Seat - Window (covers TCONDI1,
TCOND6 & TCONDS)
TCOVER3 Destination - Sydney, Class - Economy, Seat - Window (covers TCONDS3,
TCOND6 & TCONDS)
TCOVER4 Destination - London, Class - First, Seat - Window (covers TCOND2,
TCOND4 & TCONDS8)
TCOVER5 Destination - London, Class - Business, Seat - Window (covers TCOND2,
TCONDS5 & TCONDS)
TCOVER6 Destination - London, Class - Economy, Seat - Aisle (covers TCOND2,

B.2.5.8.2 Step 4: Derive Test Cases (TD4)

TCOND6 & TCOND7)

A base-choice test case can now be derived by combining the test coverage items:
Base Choice: London, Economy, Window

This is shown as the first test case the table below. The remaining test cases can now be derived by
substituting one P-V pair into the base-choice test case per test and repeating until all P-V pairs are
covered:

Table B.25 — Test cases for base choice testing

Input Values B
xpected Test Coverage Item
Test Case # Destination Class Seat Result
1 London Economy Window Accept TCOVER1
2 Paris Economy Window Accept TCOVER2
3 Sydney Economy Window Accept TCOVER3
4 London First Window Accept TCOVER4
5 London Business Window Accept TCOVERS
6 London Economy Aisle Accept TCOVER6

B.2.5.8.3 Step 5: Assemble Test Sets (TD5)

Since a small number of test cases derived in this example, it may be decided that they be combined into
the one test set.

TS1: TEST CASES 1,2,3,4,5,6

B.2.5.8.4 Step 6: Derive Test Procedures (TD6)

Since all test cases are in the one test set, we can derive one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

74

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

ISO/IEC/IEEE 29119-4:2015(E)

B.2.5.8.5 Base Choice Testing Coverage

Using the formula provided in 6.2.5.4 and the test coverage items derived above:
6
Coverage pase_choice) = A x100%=100%

Thus, 100% coverage of test coverage items for base choice testing has been achieved.

B.2.6 Decision Table Testing

B.2.6.1 Introduction

The aim of decision table testing is to derive a set of test cases that cover the logical associations
between inputs and outputs (which are represented as a series of conditions and actions) associated by
decision rules according to the chosen level of condition and action coverage.

B.2.6.2 Specification

Take a cheque debit function whose inputs are debit amount, account type and current balance and
whose outputs are new balance and action code. Account type may be postal (‘p’) or counter (‘c’). The
action code may be ‘D&L, ‘D’, ‘S&L or ‘L, corresponding to ‘process debit and send out letter’, ‘process
debit only’, ‘suspend account and send out letter’ and ‘send out letter only’ respectively. The function
has the following test basis:

If there are sufficient funds available in the account or the new balance would be within the authorised
overdraft limit then the debit is processed. If the new balance would exceed the authorised overdraft
limit then the debit is not processed and if it is a postal account it is suspended. Letters are sent out for
all transactions on postal accounts and for non-postal accounts if there are insufficient funds available
(i.e. the account would no longer be in credit).

B.2.6.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set to be defined:

FS1: cheque debit function

B.2.6.4 Step 2: Derive Test Conditions (TD2)

The test conditions are the conditions and actions that can be derived from the test basis.

The conditions (C) are:
TCOND1 (C1): New balance in credit (for FS1)
TCOND2 (C2): New balance overdraft, but within authorised limit (for FS1)
TCOND3 (C3): Account is postal (for FS1)

The actions (A) are:

TCOND4 (A1): Process debit (for FS1)
TCONDS5 (A2): Suspend account (for FS1)
TCONDG6 (A3): Send out letter (for FS1)
© ISO/IEC 2015 - All rights reserved 75

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

B.2.6.5 Step 3: Derive Test Coverage Items (TD3)

The decision table enables identification of test coverage items as decision rules in the decision table.
Each column of the decision table is a decision rule. Decision tables may be also be represented with
the decision rules in rows rather than columns. The table comprises two parts. In the first part each
decision rule is tabulated against the conditions. A ‘T’ indicates that the condition must be TRUE for
the decision rule to apply and an ‘F’ indicates that the condition must be FALSE for the decision rule
to apply. In the second part, each decision rule is tabulated against the actions. A ‘T’ indicates that the
action will be performed; an ‘F’ indicates that the action will not be performed; an asterisk (*) indicates
that the combination of conditions is infeasible and so no actions are defined for the decision rule. Two
or more columns may be combined if they contain a Boolean condition that does not affect the outcome
regardless of its value.

The example has the following decision table, which identifies 8 decision rules, 6 of which are feasible
and hence result in the definition of 6 test coverage items:

Table B.26 — Decision table of the cheque debit function

Decision Rules: 1 2 3 4 5 6 7 8
C1: New balance in credit F F F F

C2: New balance overdraft, F F T T T

but within authorised limit
C3: Account is postal F T F T F T F T
A1: Process debit F F T T T T * *
A2: Suspend account F T F F F F * *
A3: Send out letter T T T T F T * *

NOTE1 Although “T” and “F” have been used in the above decision table to denote “True” and “False”, other
notations could be used (e.g. the words “true” and “false” could be used instead).

NOTE 2 In the table above, both conditions and actions are binary (T or F) conditions, which results in
a “limited-entry” decision table. In “extended entry” decision tables, conditions and/or actions can assume
multiple values.

B.2.6.6 Step 4: Derive Test Cases (TD4)

Test cases are derived by selecting one or more feasible decision rules from the decision table at a
time that have not yet been covered by a test case, identifying inputs to exercise the condition(s)
and actions(s) of the decision rule and arbitrary valid values for any other input variables required
by the test case, determining the expected result and repeating these steps until the required level of
test coverage is achieved. The following test cases would be required to achieve 100% decision table
coverage, and correspond to the decision rules in the decision table above (no test cases are derived for
decision rules 7 and 8 since they are infeasible):

Table B.27 — Test case table of the cheque debit function

CAUSES/INPUTS EFFECTS/RESULTS
account overdraft current debit New action Test Coverage
Test Case type limit balance amount Balance code [tem
1 ‘c £100 -£70 £50 -£70 ‘T 1
2 P £1500 £420 £2000 £420 ‘S&L 2
3 ‘¢’ £250 £650 £800 -£150 ‘D&L 3
4 P £750 -£500 £200 -£700 ‘D&L 4
5 ‘c’ £1000 £2100 £1200 £900 ‘D’ 5
76 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.27 (continued)

CAUSES/INPUTS EFFECTS/RESULTS
account overdraft current debit New action
Test Coverage
Test Case type limit balance amount Balance code Item
6 ‘P’ £500 £250 £150 £100 ‘D&L 6

B.2.6.7 Step 5: Assemble Test Sets (TD5)

Since there are only six test cases required to cover all decision rules, it may be decided that all test
cases will be manual and will all be placed in the one test set.

TS1: TESTCASE 1, 2,3,4,5,6

B.2.6.8 Step 6: Derive Test Procedures (TD6)
Since all test cases are in the one test set, we can derive one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

B.2.6.9 Decision Table Testing Coverage

Using the formula provided in 6.2.6 and the test coverage items derived above:
6 0 0
Coverage[decision_table_testing] = EX 100%=100%

Thus, 100% coverage of test coverage items for decision table testing has been achieved.

B.2.7 Cause-Effect Graphing

B.2.7.1 Introduction

The aim of cause-effect graphing is to derive test cases that cover the logical relationships between
causes (e.g. inputs) and effects (e.g. outputs) of a test item according to a chosen level of coverage.
The technique utilises a notation that allows a cause-effect graph of the test item to be designed that
illustrates relationships between causes and effects as well as explicit constraints placed on causes and
effects. This differs from decision table testing in which constraints are not explicitly stated. Naturally,
the technique is only effective to the extent that the model captures the test basis of the test item.

B.2.7.2 Specification

Take a cheque debit function whose inputs are debit amount, account type and current balance and
whose outputs are new balance and action code. Account type may be postal (‘p’) or counter (‘c’). The
action code may be ‘D&L, ‘D’, ‘S&L’ or ‘L, corresponding to ‘process debit and send out letter’, ‘process
debit only’, ‘suspend account and send out letter’ and ‘send out letter only’ respectively. The function
has the following test basis:

If there are sufficient funds available in the account or the new balance would be within the authorised
overdraft limit then the debit is processed. If the new balance would exceed the authorised overdraft
limit then the debit is not processed and if it is a postal account it is suspended. Letters are sent out for
all transactions on postal accounts and for non-postal accounts if there are insufficient funds available
(i.e. the account would no longer be in credit).

B.2.7.3 Step 1: Identify Feature Sets (TD1)

As there is only one test item defined in the test basis, only one feature set to be defined:

© ISO/IEC 2015 - All rights reserved 77
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

FS1: cheque debit function

B.2.7.4 Step 2: Derive Test Conditions (TD2)

The test conditions are the causes and effects that can be derived from the test basis.

The causes are:
TCOND1 (C1): New balance in credit (for FS1)
TCOND2 (C2): New balance overdraft, but within authorised limit (for FS1)
TCOND3 (C3): Account is postal (for FS1)

The effects are:

TCOND4 (A1): Process debit (for FS1)
TCONDS (A2): Suspend account (for FS1)
TCONDG6 (A3): Send out letter (for FS1)

A cause-effect graph shows the relationship between the causes and effects in a notation similar to that
used by designers of hardware logic circuits. The test basis is modelled by the graph shown below.

Figure B.10 — Cause-effect graph of the cheque debit function (see below for notation)

NOTE1 The “empty” node that connects C1/C2 to A1/A2/A3 is a connector node that is used to group together
two or more causes.

78 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

Identity @ @
Not @ @
And %/ @
Or %/ @
Nand @ A @
Nor

@

ol
<

ISO/IEC/IEEE 29119-4:2015(E)

Node Y is true only if X is true
IfX=TthenY =Telse Y=F

Node Y is true only if X is false
IfX=FthenY=Telse Y=F

Node Z is true only if both X and Y are true
IfX=TandY=TthenZ =Telse Z=F

Node Z is true only if either X or Y are true
IfX=TorY=TthenZ=Telse Z=F

Node Z is true only if either X or Y or both are false
IfX=ForY=FthenZ=Felse Z=T

Node Z is true only if neither X norY are true
IfX=TorY=TthenZ =Felse Z=T

Figure B.11 — Notation for illustrating relationships between causes and effects in cause-
effect graphing

NOTE 2

Although the following “constraint” notations are not required for the example demonstrated in

this clause, they are included here as they confer advantages in identifying required, permitted and forbidden
relationships between causes and relationships between effects. Such constraint relationships are not explicitly
stated in decision tables and are often implicit in specifications. These notations provide a means for verifying
the integrity of the cause-effect graph, the decision table and the test cases that are derived from it.

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

79

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Cause Constraints

Exclusive /@
E \@
Inclusive /@
| \@
One and
only one
0 \@
Requires @
R <
Effect Constraints
Masks

YV

Cause X and cause Y cannot be simultaneously true

IfX=1thenY=0,ifY=1thenX=0, can be
simultaneously false

Cause X and cause Y cannot be simultaneously false

IfX=0thenY=1,ifY=0thenX =1, can be
simultaneously true

One and only one of cause X and cause Y must be true

IfX=1thenY =0,ifY=1then X = 0, cannot be
simultaneously true or false

Cause Y must be true whenever cause X is true

IfX=1thenY=1,ifX=0thenY=10rY=0

Effect Y will be forced false whenever effect X is true

IfX=1thenY=0

Figure B.12 — Notation for representing cause and effect constraints in cause-effect graphing

B.2.7.5 Step 3: Derive Test Coverage Items (TD3)

The cause-effect graph is then recast in terms of a decision table (e.g. see for example (Myers 1979)
and (Nursimulu and Probert 1995)), which enables identification of the test coverage items (i.e. the
feasible decision rules in the decision table). Each column of the decision table is a decision rule. The
table comprises two parts. In the first part each decision rule is tabulated against the causes. A ‘T’
indicates that the cause must be TRUE for the decision rule to apply and an ‘F’ indicates that the cause
must be FALSE for the decision rule to apply. In the second part, each decision rule is tabulated against
the effects. A ‘T’ indicates that the effect will occur; an ‘F’ indicates that the effect will not occur; an
asterisk (*) indicates that the combination of causes is infeasible and so no effects are defined for the

decision rule.

The example has the following decision table, which identifies six test coverage items (decision rules 7
and 8 are not test coverage items since they are infeasible):

80

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.28 — Decision table of the cheque debit function

Decision Rules: 1 2 3 4 5 6 7 8
C1: New balance in credit F F F F T T T

C2: New balance overdraft, F F T T T T
but within authorised limit

C3: Account is postal F T F T F T F T
Al: Process debit F F T T T T * *
A2: Suspend account F T F F F F * *
A3: Send out letter T T T T F T * *

B.2.7.6 Step 4: Derive Test Cases (TD4)

Test cases are derived by selecting one or more feasible decision rules from the decision table that have
not been included in a test case, identifying inputs to exercise the causes(s) and effects(s) of the decision
rule and arbitrary valid values for any other input variable required by the test case, determining the
expected result of the test case, and repeating these steps until all feasible decision rules are covered.
The following test cases achieve 100% cause-effect coverage and correspond to the decision rules in
the decision table above (no test cases are generated for decision rules 7 and 8 as they are infeasible):

Table B.29 — Test case table of the cheque debit function

CAUSES/INPUTS EFFECTS/RESULTS
account overdraft current debit New action Test ﬁ(gsmge
Test Case type limit balance amount balance code
1 ‘¢ £100 -£70 £50 -£70 ‘T 1
2 ‘P’ £1500 £420 £2000 £420 ‘S&L 2
3 ‘c £250 £650 £800 -£150 ‘D&L 3
4 ‘P’ £750 -£500 £200 -£700 ‘D&L 4
5 c £1000 £2100 £1200 £900 ‘D’ 5
6 ‘p’ £500 £250 £150 £100 ‘D&L 6

B.2.7.7 Step 5: Assemble Test Sets (TD5)

Since there are only six test cases required to cover all decision rules, it may be decided that all test
cases will be manual and will all be placed in the one test set.

TS1: TESTCASE 1, 2,3,4,5,6
B.2.7.8 Step 6: Derive Test Procedures (TD6)

Since all test cases are in the one test set, we can derive one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

B.2.7.9 Cause-Effect Graphing Coverage

Using the formula provided in 6.2.7 and the test coverage items derived above:
6 0, 0,
Coverage cquse—effect—graphing) = A x100%=100%

Thus, 100% coverage of test coverage items for cause-effect graphing has been achieved.

© ISO/IEC 2015 - All rights reserved 81
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

B.2.8 State Transition Testing

B.2.8.1 Introduction

The aim of state transition testing is to derive a set of test cases that cover transitions and/or states of
the test item according to the chosen level of coverage. The technique is based upon an analysis of the
test basis of the test item to model its behaviour by state transitions.

B.2.8.2 Specification
Consider a test item, manage_display_changes, with the following test basis:

The test item responds to input requests to change an externally held display mode for a time display device.
The external display mode can be set to one of four values: two correspond to displaying either the time or
the date, and the other two correspond to modes used when altering either the time or date.

There are four possible input requests: ‘Change Mode’, ‘Reset’, ‘Time Set’ and ‘Date Set’. A ‘Change Mode’
input request shall cause the display mode to move between the display time’ and ‘display date’ values. If the
display mode is set to ‘display time’ or display date’ then a ‘Reset’ input request shall cause the display mode
to be set to the corresponding ‘alter time’ or ‘alter date’ modes. The ‘Time Set’ input request shall cause the
display mode to return to ‘display time’ from ‘alter time’ while similarly the ‘Date Set’ input request shall
cause the display mode to return to ‘display date’ from ‘alter date’.

B.2.8.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature needs to be defined:

FS1: manage_display_changes

B.2.8.4 Step 2: Derive Test Conditions (TD2)

A state model is produced as the test condition. State transition diagrams (STD) are commonly used
as state models and their notation is illustrated below. A STD consists of states, transition, events
and actions (see Figure B.13). Events are always caused by input. Similarly, actions are likely to cause
output. The output from an action may be essential in order to identify the current state of the test
item. A transition is determined by the current state and an event and is normally labelled simply with
the event and action. As explained in 5.2.8.1, in state transition testing the test conditions may be all
states of the state model, all transitions of the state model or the entire state model, depending on the
coverage requirements of testing.

State 1

input —4—p event

transition ——) action ——p output

A 4
State 2

Figure B.13 — Generic state model

82 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

The STD for the test item manage_display_changes is as follows (which in this example is the test

condition TCOND1):
‘reset’ (R)
alter time (AT)
DISPLAYING > CHANGING
TIME (S1) < TIME (S3)
‘time set’ (TS
'y (TS)
display time (T)
‘change ‘change
mode’ (CM) mode’ (CM)
display display
time (T) date (D)
‘reset’ (R)
A 4 alter date (AD)
DISPLAYING > CHANGING
DATE (S2) < DATE (S4)

‘date set’ (DS)

display date (D)

Figure B.14 — State transition diagram for manage_display_changes

B.2.8.5 Step 3: Derive Test Coverage Items - 0-Switch and “All Transitions” Testing (TD3)

Assuming the chosen level of coverage is “all transitions”, a state table can be drawn to represent all
valid and invalid transitions (the required test coverage items). To achieve full 0-switch coverage only
the valid transitions need to be exercised.

A limitation of 0-switch coverage is that the tests are derived to exercise only the valid transitions in
the test item. A more thorough test of the test item will also attempt to cause invalid transitions to
occur (“all transitions”). The STD only explicitly shows the valid transitions (all transitions not shown
are considered invalid). One example of a state model that explicitly shows both valid and invalid
transitions is a state table, while an alternative representation is a state transition diagram that
includes an “anomalous” state at which all invalid transitions terminate. One notation used for state
tables is briefly described below:

Table B.30 — State table notation

Input 1 Input 2 etc.

Start State 1 Entry A Entry B etc.
Start State 2 Entry C Entry D etc.
etc. etc. etc. etc.

where Entry X = Finish State / Output or Action for the given start state and input.

© ISO/IEC 2015 - All rights reserved 83
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

The state table for manage_display_changes is shown below:

Table B.31 — State table for manage_display_changes

CM R TS DS
s1 S2/D S3/AT S1/- S1/-
S2 S1/T S4/AD S2/- S2/-
S3 S3/- S3/- S1/T S3/-
S4 S4/- S4/- S4/- S2/D

Any entry where the state remains the same and the action is shown as null (-) represents a null
transition, where any actual transition that can be induced will represent a failure. It is the testing of
these null transitions that is ignored by test sets designed just to achieve coverage of valid test coverage
items (0-switch). Thus a more complete test set (“all transitions”) will test both possible transitions
and null transitions, which means testing the response of the test item to all inputs specified in the test
basis in all possible states. The state table provides an ideal means of directly deriving test coverage
items to cover null transitions (for “all transition” coverage).

There are 16 entries in the table above representing each of the four possible inputs that can occur in
each of the four possible states, making 16 test coverage items for “all transitions” coverage, which can
be read from the state table as shown below:

Table B.32 — State table to test case table mapping for manage_display_changes

CM R TS DS

o S2/D S3/AT S1/- S1/-
(TCOVER1) (TCOVER2) (TCOVER3) (TCOVER4)

< S1/T S4/AD S2/- S2/-
(TCOVERS) (TCOVERS6) (TCOVER7) (TCOVERS)

o S3/- S3/- S1/T S3/-
(TCOVER9) (TCOVER10) (TCOVER11) (TCOVER12)

o4 S4/- S4/- S4/- S2/D
(TCOVER13) (TCOVER14) (TCOVER15) (TCOVER16)

Thus, the following (valid and invalid) test coverage items were identified from the state table above for
“all transitions” coverage:

TCOVERT1: S1 to S2 with input CM (for FS1, valid transition)

TCOVER2: S1 to S3 with input R (for FS1, valid transition)

TCOVERS3: S1 to S1 with input TS (for FS1, invalid transition)

TCOVER4: S1 to S1 with input DS (for FS1, invalid transition)

TCOVERS: S2 to S1 with input CM (for FS1, valid transition)

TCOVERG6: S2 to S4 with input R (for FS1, valid transition)

TCOVER?7: S2 to S2 with input TS (for FS1, invalid transition)

TCOVERS: S2 to S2 with input DS (for FS1, invalid transition)

TCOVERO: S3 to S3 with input CM (for FS1, invalid transition)

84 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCOVER10: S3 to S3 with input R (for FS1, invalid transition)
TCOVER11: S3 to S1 with input TS (for FS1, valid transition)

TCOVER12: S3 to S3 with input DS (for FS1, invalid transition)
TCOVER13: S4 to S4 with input CM (for FS1, invalid transition)
TCOVER14: S4 to S4 with input R (for FS1, invalid transition)
TCOVER15: S4 to S4 with input TS (for FS1, invalid transition)
TCOVERT16: S4 to S2 with input DS (for FS1, valid transition)

B.2.8.6 Step 4: Derive Valid Test Cases (TD4)

B.2.8.6.1 Options

Test cases can now be derived to exercise each of the possible transitions (using the abbreviated STD
labels). Input(s) to exercise the transition(s) that are to be covered by each test case can be determined
from the STD, as can the expected result, which can be determined by combining the expected output
and final state of the transition in the STD. Test cases may be derived to cover one to n transitions per
test case, where n is the maximum number of transitions possible. For example, test cases could be
derived for 0-switch or 1-switch coverage (although in practice it would not be necessary to derive
both 0-switch and 1-switch test cases, this is demonstrated below simply to explain the approach). Test
cases can also be derived to cover invalid transitions. These three scenarios are demonstrated below.

B.2.8.6.2 Step 4a: Derive 0-Switch Test Cases (Valid Transitions)

The following six test cases provide 0-switch test coverage. Each test case is derived by selecting a
transition and identifying the inputs, expected output and final state from the STD until all transitions
are covered by one test case.

Table B.33 — 0-switch test cases for manage_display_changes

Test Case 1 2 3 4 5 6
Start State S1 S1 S2 S2 S3 S4
Input CM R CM R TS DS
Expected Output D AT T AD T D
Finish State S2 S3 S1 S4 S1 S2
Test Coverage Item 1 2 5 6 11 16
NOTE A test procedure could be written for the six text cases in the table above that would allow them to be

executed sequentially so that the “Finish State” for one test case is the start state of the next (e.g. execution order
5,1,4,6,3,2). This is elaborated on in step 5.

This indicates that for test case 1 the starting state is DISPLAYING TIME (S1), the input is ‘change mode’
(CM), the expected output is ‘display date’ (D), and the finish state is DISPLAYING DATE (S2).

These six test cases exercise each of the “valid” transitions and so achieves 0-switch coverage (Cho
1987). Tests written to achieve this level of coverage are limited in their ability to detect some types of
faults because although they will detect the most obvious incorrect transitions and outputs, they will
not detect more subtle faults that are only detectable through exercising sequences of transitions.

B.2.8.6.3 Step 4b: Derive Test Cases for Invalid Transitions

« o«

Test cases to cover invalid transitions can now be defined as follows, where “~“ represents a null transition:

© ISO/IEC 2015 - All rights reserved 85
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.34 — invalid test cases for manage_display_changes

Test Case 7 8 9 10 11 12 13 14 15 16
Start State S1 S1 S2 S2 S3 S3 S3 S4 S4 S4
Input TS DS TS DS CM R DS CM R TS
Expected Output - - - - - - - - - -
Finish State S1 S1 S2 S2 S3 S3 S3 S4 S4 S4
Test Coverage Item 3 4 7 8 9 10 12 13 14 15

As the table above shows, test cases that cover invalid test coverage items should not cause transition
away from the starting state. The test cases in the above two tables combined will achieve “all
transitions” coverage.

B.2.8.6.4 Step 4c: Derive Test Coverage Items - 1-Switch Testing (TD3)
The following test coverage items can be derived from the STD to achieve 1-switch coverage:

TCOVER17: S1 to S2 to S1 with inputs CM and CM (for FS1)

TCOVER18: S1to S2 to S4 with inputs CM and R (for FS1)
TCOVER19: S1 to S3 to S1 with inputs Rand TS (for FS1)
TCOVERZ20: S3 to S1 to S2 with inputs TS and CM (for FS1)
TCOVER21 S3 to S1 to S3 with inputs TS and R (for FS1)

TCOVER22: S2 to S1 to S2 with inputs CM and CM (for FS1)
TCOVER23: S2 to S1 to S3 with inputs CM and R (for FS1)
TCOVER24: S2 to S4 to S2 with inputs R and DS (for FS1)
TCOVER25: S4 to S2 to S1 with inputs DS and CM (for FS1)

TCOVER26: S4 to S2 to S4 with inputs DS and R (for FS1)

B.2.8.6.5 Step 4d: Derive 1-Switch Test Cases (TD4)

If the test coverage chosen in step TD3 was to cover all 1-switch transitions, then test cases could be
written to exercise all possible sequential pairs of transitions. In this example, there are ten, as follows:

Table B.35 — 1-switch test cases for manage_display_changes

Test Case 17 18 19 20 21 22 23 24 25 26
Start State S1 S1 S1 S3 S3 S2 S2 S2 S4 S4
Input CM CM R TS TS CM CM R DS DS
Expected Output D D AT T T T T AD D D
Next State S2 S2 S3 S1 S1 S1 S1 S4 S2 S2
Input CM R TS CM R CM R DS CM R
Expected Output T AD T D AT D AT D T AD
Finish State S1 S4 S1 S2 S3 S2 S3 S2 S1 S4
Test Coverage Item 17 18 19 20 21 22 23 24 25 26
86 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

This indicates that test case 17 comprises two transitions. For the first transition the starting state
is DISPLAYING TIME (S1), the initial input is ‘change mode’ (CM), the intermediate expected output is
display date (D), and the next state is DISPLAYING DATE (S2). For the second transition, the second input
is ‘change mode’ (CM), the final expected output is display time (T), and the finish state is DISPLAYING
TIME (S1). Note that the intermediate states, and the inputs and outputs for each transition, are
explicitly defined.

Longer sequences of transitions can be tested to achieve higher and higher levels of switch coverage,
dependent on the level of test thoroughness required.

B.2.8.7 Step 5: Assemble Test Sets (TD5)

If may be decided that all 0-switch test cases (covering valid transitions) will be assembled into one test
set, the “all transitions” test cases covering invalid transitions in another test set and all 1-switch test
cases into a third, as follows:

TS1: 0-switch test cases - TEST CASES 1, 2, 3,4, 5, 6.
TS2: “all transitions” INVALID test cases -TEST CASES 7,8, 9, 10, 11, 12, 13, 14, 15, 16.
TS3: 1-switch test cases - TEST CASES 17, 18, 19, 20, 21, 22, 23, 24, 25, 26.

NOTE1 Insome instances, it is possible to order individual test cases such that the “Finish State” for one test
case is the starting state of the next. This can improve efficiency during test execution. The possibility of doing
this depends on the specific state model being tested. In the example above, the following ordering of test cases
would achieve this objective: TS1: 0 switch test cases - TEST CASES 5, 1, 4, 6, 3, 2.

NOTE 2 Since the 1-switch test cases defined above cover all paths in the 0-switch test cases, it is unnecessary

to define test sets and test procedures for the 0-switch test cases. However, they are included here for
completeness.

B.2.8.8 Step 6: Derive Test Procedures (TD6)
One test procedure could be defined to execute all test cases in the order that they are defined in step 5:

TP1: covering all test cases in TS1, TS2 and TS3, in the order they are defined in the test sets.

B.2.8.9 State Transition Testing Coverage

Using the formula provided in 6.2.8 and the test coverage items derived above:

6
Coverage o_switch_coverage) = Pl 100%=100%
6 0 0
Coverage(all_transitions_coverage) = E x100%=100%

10
Coverage(1_syitch_coverage) = T0 x100%=100%

Thus, 100% coverage of test coverage items for 0-switch testing, 1-switch testing and all-transitions
testing has been achieved.

B.2.9 Scenario Testing

B.2.9.1 Introduction

The aim of scenario testing is to derive test cases that cover the scenarios of the test item according to
the chosen level of coverage. Scenario testing is based upon an analysis of the test basis to produce a
model of its behaviour in terms of sequences of actions that constitute workflows through the test item.

© ISO/IEC 2015 - All rights reserved 87
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

There are two types of scenario testing demonstrated below. The first example is based on a generic
form of the technique, while the second is a specific example based on use cases.

B.2.9.2 Example 1

B.2.9.2.1 Specification

Consider a test item withdraw_cash that forms part of the system that drives an Automated Teller
Machine (ATM), and which has the following test basis:

The withdraw_cash function allows customers with bank accounts to withdraw funds from their account
via an ATM. A withdrawal can only be made by a user with an open bank account, a valid card and matching
pin, and a working ATM. After the withdrawal is complete, the account balance is debited by the withdrawn
amount, a receipt for the withdrawal is printed, and the ATM is available and ready for the next user.

The following scenarios have been specified as being required by the customer:
Typical Scenario

— Successful withdrawal of funds from account.

Alternative Scenarios

Withdrawal not approved, because:

— the user’s bank card is rejected as it is unrecognised by the ATM

— the user enters their PIN incorrectly up to 2 times

— the user enters their PIN incorrectly three times, with the ATM retaining the card
— the user selects deposit or transfer instead of withdrawal

— the user selects an incorrect account that does not exist on the entered card
— the withdrawal amount entered by the user is invalid

— there is insufficient cash in the ATM

— the user enters a non-dispensable amount

— the user enters an amount that exceeds their daily allowance

— there are insufficient funds in the user’s bank account

NOTE In reality, additional scenarios, which address situations such as the user pressing cancel at any point
in the process, are also possible.

B.2.9.2.2 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1: withdraw_cash function

B.2.9.2.3 Step 2: Derive Test Conditions (TD2)

To enable the identification of test conditions, a model of the test item must be produced that identifies
the scenarios (and the activities within them) present in each scenario. The example model below is a
flow-of-events diagram. In this notation, the “main” path is represented as a thick black line, the start
and end points of the workflow are labelled, and each action is tagged with a unique identifier that
designates it as a user (U) or system (S) (i.e. test item) action.

88 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

S1.1
uU3.1 U4

System u2 S2.1 Press Select S4.1
Accepts Input PIN PIN Correct Withdraw Account :

Card

S1.2 S4.2

System 33'2 Invalid

: ress l— Account

Rejects Card Deposit or GO BACK

Transfer
sS9 S2.2 S10
PIN Incorrect Invoke
< 3 tries Deposit or
Transfer
S2.3
S3
> P"_‘ Incgrrect > Retain Card
= 3 tries
END
S4.1 o $5.1 S6 s7 S8 a5
AVaIld Withdraw Suitable || Dispense jmmlpp{ Debit Dispense =—> e
ccount —— amount cash balance Receipt

U6
User
removes
card

S5.2
» Invalid —————»
amount GO BACK

S5.3
»{ Insufficient —=>

[cosacK]
ATM Funds || GO BACK
[sosacK]

S5.4
n Non- »

[Goeack]
U5
us
U5
[Gosack]

dispensable
amount

S5.5
Exceed daily ——»
allowance || GO BACK

S5.6
o | Insufficient >

Account
Funds GO BACK

Figure B.15 — Flow of events diagram for withdraw_cash function

In scenario testing, the test conditions are the main and alternative scenarios that are to be covered
during testing (i.e. they are the sequences of user and system interactions through the flow of events
diagram that constitutes one scenario). There were 11 scenarios described in the specification, including
one main and ten alternatives. These can be described as test conditions (covering FS1) as follows:

TCOND1: Successful withdrawal of funds (covers U1, S1.1, U2, S2.1, U3.1, U4, S4.1, U5, S5.1,
S6,S7,S8,S9,U6)

TCOND2: User’s card is unrecognised by ATM (covers U1, S1.2, S9, U6)
TCOND3: User enters PIN incorrectly < 3 times (covers U1, S1.1, U2, S2.2)
TCOND4: User enters pin incorrectly 3 times (covers U1, S1.1, U2, S2.2,U2,S2.2,U2,S2.3,S3)

TCONDD5: User selects deposit or transfer (covers U1, S1.1,U2, S2.1,U3.2, S10)

© ISO/IEC 2015 - All rights reserved 89
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCONDG6: User selects incorrect account (covers U1, S1.1, U2, S2.1, U3.1, U4, S4.2)

TCOND?7: User enters invalid withdrawal amount (covers U1, S1.1, U2, S2.1, U3.1, U4, S4.1, U5, S5.2)
TCONDS: Insufficient cash in the ATM (covers U1, S1.1,U2, S2.1, U3.1, U4, S4.1, U5, S5.3)
TCONDO: User enters non-dispensable amount (covers U1, S1.1, U2, S2.1, U3.1, U4, S4.1, U5, S5.4)

TCOND10: User enters amount exceeding daily (covers U1, S1.1, U2, S2.1, U3.1, U4, S4.1, U5, S5.5)
allowance

TCOND11: Insufficient funds in user’s account (covers U1, S1.1, U2, S2.1, U3.1, U4, S4.1, U5, S5.6)

B.2.9.2.4 Step 3: Derive Test Coverage Items (TD3)

In scenario testing, the test conditions are the typical and alternative scenarios, which are the same as
the test coverage items.

TCOVER1 = TCOND1 TCOVER7 = TCOND7
TCOVER2 = TCOND2 TCOVER8 = TCOND8
TCOVER3 = TCOND3 TCOVER9 = TCONDO9
TCOVER4 = TCOND4 TCOVER10 = TCOND10
TCOVERS = TCONDS TCOVER11 = TCOND11

TCOVER6 = TCONDG6

B.2.9.2.5 Step 4: Derive Test Cases (TD4)

Test cases are derived by selecting a scenario to cover, identifying inputs to exercise the path covered by
the test case, determining the expected result of the test and repeating until all scenarios are covered
as required. The steps of the test case are typically worded in natural language format. If we assume
that one test case is required to cover each test coverage item that was identified, the following test
cases could be derived.

NOTE 1 Within each test case, there are a wide variety of input values that could be chosen to populate each
input field. Equivalence Partitioning can be used to derive a set of values for populating each input field.

Table B.36 — Test cases for scenario testing

Test Case # 1

Test Case Name Successful withdrawal of funds

Scenario Path Exercised U1,S1.1,02,S2.1,U3.1, U4, S4.1, U5, S5.1, S6, S7, S8, S9, U6

Input Valid card with valid customer account - assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card
ATM Balance - $50,000

Customer Account Balance - $100

Withdrawal amount - $50

Pre-condition A withdrawal can only be made by a user with an open bank account, a valid
card and matching pin, and a working ATM

90 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.36 (continued)

Expected Result

Withdrawal has successfully been made from customer account
ATM balance is $49,950

Customer account balance is $50

ATM is open, operational and awaiting a customer card as input

Test Coverage Item

TCOVER1

Table B.37 — Test cases for scenario testing

Test Case # 2
Test Case Name User’s card is unrecognised by ATM
Scenario Path Exercised U1, S1.2,59, U6

Input

Invalid card

Pre-condition

A withdrawal can only be made by a user with an open bank account, a valid
card and matching pin, and a working ATM

Expected Result

Card is rejected by the ATM with an error message indicating that the card is
invalid. The ATM is waiting for the customer to remove the invalid card.

Test Coverage Item

TCOVER2

Table B.38 — Test cases for scenario testing

Test Case #

3

Test Case Name

User enters PIN incorrectly < 3 times

Scenario Path Exercised

U1, S1.1,02, 52,2

Input

Valid card with valid customer account - assume 293910982246 is valid

Invalid PIN entered twice — assume 0000 is invalid and does not match card
ATM Balance - $100

Customer Account Balance - $500

Pre-condition

A withdrawal can only be made by a user with an open bank account, a valid card
and matching pin, and a working ATM

Expected Result

PIN is rejected by the ATM. System prompts user to re-enter their pin.

Test Coverage Item

TCOVER3

Table B.39 — Test cases for scenario testing

Test Case #

4

Test Case Name

User enters PIN incorrectly 3 times

Scenario Path Exercised

U1,S1.1,02,S82.2,U2,S2.2,U2,S2.3,S3

Input

Valid card with valid customer account - assume 293910982246 is valid

Invalid PIN entered three times - assume 0000 is invalid and does not match card
ATM Balance - $100

Customer Account Balance - $500

Pre-condition

A withdrawal can only be made by a user with an open bank account, a valid card
and matching pin, and a working ATM

© ISO/IEC 2015 - All rights reserved 91
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.39 (continued)

Expected Result Each time invalid PIN is entered, system displays a message indicating that PIN is
incorrect and prompts user to enter PIN again. On the third try, system retains the
card and displays message indicating that card has been retained and that user
should contact their bank to recover it. ATM retains the user’s card. ATM is open,
operational and awaiting a customer card as input.

Test Coverage Item TCOVER4

Table B.40 — Test cases for scenario testing

Test Case # 5

Test Case Name User selects deposit or transfer

Scenario Path Exercised U1,S1.1,U02,S2.1,03.2,S10

Input Valid card with valid customer account — assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card

Transaction Type - Deposit

Pre-condition A withdrawal can only be made by a user with an open bank account, a valid card
and matching pin, and a working ATM

Expected Result System displays message prompting the user to enter deposit details

Test Coverage Item TCOVERS

Table B.41 — Test cases for scenario testing

Test Case # 6

Test Case Name User selects incorrect account

Scenario Path Exercised U1,S1.1,02,S2.1,U3.1, U4, S4.2

Input Valid card with valid customer account - assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card
ATM Balance - $100

Customer selects incorrect account that does not exist on the card

Pre-condition A withdrawal can only be made by a user with an open bank account, a valid card
and matching pin, and a working ATM

Expected Result System displays message indicating that the account entered is invalid, and
prompts the user to select a new account

Test Coverage Item TCOVER6

Table B.42 — Test cases for scenario testing

Test Case # 7

Test Case Name User enters invalid withdrawal amount

Scenario Path Exercised U1,S1.1,U02,S2.1, U3.1, U4, S4.1, U5, S5.2

Input Valid card with valid customer account - assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card
ATM Balance - $100

Customer Account Balance - $20

Withdrawal amount - $17

Pre-condition A withdrawal can only be made by a user with an open bank account, a valid card
and matching pin, and a working ATM

92 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.42 (continued)

Expected Result

System displays message indicating that the amount entered is invalid, and
prompts the user to enter a new amount

Test Coverage Item

TCOVER7

Table B.43 — Test cases for scenario testing

Test Case #

8

Test Case Name

Insufficient cash in the ATM

Scenario Path Exercised

U1, S1.1,02,S2.1,U3.1, U4, S4.1, U5, S5.3

Input

Valid card with valid customer account - assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card
ATM Balance - $100

Customer Account Balance - $500

Withdrawal amount - $200

Pre-condition

A withdrawal can only be made by a user with an open bank account, a valid
card and matching pin, and a working ATM

Expected Result

System displays message indicating that there are insufficient funds available in
the ATM, and prompts the user to enter a new amount

Test Coverage Item

TCOVERS

Table B.44 — Test cases for scenario testing

Test Case #

9

Test Case Name

User enters non-dispensable amount

Scenario Path Exercised

U1, S1.1,U02,S2.1,U3.1, U4, S4.1, U5, S5.4

Input

Valid card with valid customer account — assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card

ATM Balance - $100, and ATM only contains $50 notes

Customer Account Balance - $1,000

Withdrawal amount - $20

Pre-condition

A withdrawal can only be made by a user with an open bank account, a valid
card and matching pin, and a working ATM

Expected Result

System displays message indicating that denomination entered cannot be dis-
pense by the ATM, and prompts the user to enter a new amount

Test Coverage Item

TCOVER9

Table B.45 — Test cases for scenario testing

Test Case #

10

Test Case Name

User enters amount exceeding daily allowance

Scenario Path Exercised

U1, S1.1,U2,S2.1, U3.1, U4, S4.1, U5, S5.5

© ISO/IEC 2015 - All rights reserved 93

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.45 (continued)

Input

Valid card with valid customer account — assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card

ATM Balance - $100, and ATM only contains $50 notes

Customer Account Balance - $3,000

Customer Maximum Daily Allowance - $1,000

Withdrawal amount - $2,000

Pre-condition

A withdrawal can only be made by a user with an open bank account, a valid card
and matching pin, and a working ATM

Expected Result

System displays message indicating that the amount entered exceeds the user’s
daily allowance, and prompts the user to enter a new amount

Test Coverage Item

TCOVER10

Table B.46 — Test cases for scenario testing

Test Case #

11

Test Case Name

Insufficient funds in the user’s account

Scenario Path Exercised

U1, S1.1,U02,S2.1,U3.1, U4, S4.1, U5, S5.6

Input

Valid card with valid customer account - assume 293910982246 is valid

Valid PIN - assume 5652 is valid and matches card

ATM Balance - $50,000

Customer Account Balance - $20

Withdrawal amount - $50

Pre-condition

A withdrawal can only be made by a user with an open bank account, a valid
card and matching pin, and a working ATM

Expected Result

System displays message indicating that there are insufficient funds available
in user’s bank account, and prompts user to enter a new amount

Test Coverage Item

TCOVER11

NOTE 2
contained in one table.

The test cases above are each contained in a separate table for readability. In practice, they could be

B.2.9.2.6 Step 5: Assemble Test Sets (TD5)

Tests could be grouped according to whether they cover the main or alternative scenarios:

TS1: TEST CASE 1.

TS2: TEST CASES 2, 3,4,5,6,7,8,9,10, 11.

B.2.9.2.7 Step 6: Derive Test Procedures (TD6)

Two procedures are required as follows:

TP1: covering the test case in TS1, in the order specified in the test set.

TP2: covering the test cases in TS2, in the order specified in the test set.

94

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

ISO/IEC/IEEE 29119-4:2015(E)

B.2.9.2.8 Scenario Testing Coverage

Using the formula provided in 6.2.9 and the test coverage items derived above:

11
Coverage gcenario) = HX 100%=100%

B.2.9.3 Example 2

B.2.9.3.1 Introduction

Use case testing is a form of scenario testing, in which test case derivation is based on a use case model
of the test item. It is demonstrated here using a separate example to provide users of this standard with
a fully worked example of this technique.

B.2.9.3.2 Specification

Consider the following example use case for a test item change_password:

Table B.47 — Example use case for change_password

Use Case ID ucoo1
Use Case change_password
Purpose To allow a user to change their existing password to a new password
Actors User
Description This use case allows users to change their current password to a new password.
Trigger User clicks Change Password button on the Main Menu screen
Preconditions User must already be logged into the system
Scenario Name Step Action
Basic Flow 1 User clicks Change Password button
2 System displays Change Password screen
3 User enters their current password correctly
4 User enters their new password correctly
5 User re-enters their new password correctly
6 User clicks OK
7 System displays message “Password changed successfully”
Alternative Flow - 3.1 User enters their current password incorrectly
Existing Password 3.2 User enters their new password correctly
Incorrect
3.3 User enters their new password correctly
3.4 User clicks OK
3.5 System displays an error message “Current password entered incorrect-
ly. Please try again.” and highlights all text in the Current Password field
Alternative Flow - New (4.1 User enters a new password that is less than 8 characters long
Ei;i‘gcotreislless Than 8 4.2 User clicks OK
4.3 System displays an error message “New password must be at least 8
characters long. Please try again.”
© ISO/IEC 2015 - All rights reserved 95

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.47 (continued)
Use Case ID Ucoo1
Use Case change_password
Purpose To allow a user to change their existing password to a new password
Actors User
Description This use case allows users to change their current password to a new password.
Trigger User clicks Change Password button on the Main Menu screen
Preconditions User must already be logged into the system
Scenario Name Step Action
Alternative Flow - New |5.1 User enters a new password that is the same as their current password
Esss‘l;v;;sdvfc?:ge as Cur- 5.2 User clicks OK
5.3 System displays error message “New password must not be the same as
current password. Please try again.”
Alternative Flow - New |6.1 User re-enters new password that does not match the new password
Passwords Do Not they entered at step 4
Match 6.2 User clicks OK
6.3 System displays error message “New passwords do not match. Please
try again.”

Variants and Ex- |None
ceptions
Rules New password must be different from current password

New password must be at least 8 characters long

System will mask all current and new password characters with an asterisk (*)
Frequency Used the first time a new user logs into the system

Typically used twice per user per year on average

Can be invoked any time the user clicks the “Change Password” button
NOTE Additional scenarios, which address situations such as the user entering invalid characters for their

new password, could also exist.

B.2.9.3.3 Step 1: Identify Feature Sets (TD1)

As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1:

change_password function

B.2.9.3.4 Step 2: Derive Test Conditions (TD2)

Test conditions may be the typical and alternative scenarios present in the use case. In this example

they are:
TCOND1:
TCOND2:
TCOND3:
TCOND4:
TCONDS:

96

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

Main Flow (for FS1)
Alternative Flow - Existing Password Incorrect (for FS1)
Alternative Flow - New Password Less Than 8 Characters (for FS1)
Alternative Flow - New Password Same as Current Password (for FS1)
Alternative Flow - New Passwords Do Not Match (for FS1)

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

ISO/IEC/IEEE 29119-4:2015(E)

B.2.9.3.5 Step 3: Derive Test Coverage Items (TD3)

The test coverage items in use case testing are the typical and alternative scenarios, as follows.

TCOVERT1:
TCOVERZ:
TCOVERS3:
TCOVER4:
TCOVERS:

Main Flow

Alternative Flow - Existing Password Incorrect

Alternative Flow - New Password Less Than 8 Characters
Alternative Flow - New Password Same as Current Password

Alternative Flow - New Passwords Do Not Match

B.2.9.3.6 Step 4: Derive Test Cases (TD4)

(for TCOND1)
(for TCOND2)
(for TCOND3)
(for TCOND4)
(for TCONDS)

Test cases are derived by selecting a scenario to cover, identifying inputs to exercise the path covered
by the test case, determining the expected result and repeating until all use case scenarios are

covered as required.

Table B.48 — Test cases for use case testing

Use Case Name

change_password

Test Case Name

Main Flow

Description User successfully changes their password
Actors User

Test Coverage Item TCOVER1

Use Case Steps Covered 1,2,3,4,5,6,7

Preconditions

User is already logged into the system

|Step

Expected Result

1 |User clicks Change Password button

System displays Change Password screen

2 |User enters their current password cor-
rectly

Current password is masked with asterisk (*) symbols

3 |User enters their new password correctly

New password is masked with asterisk (*) symbols

4 |User re-enters their new password correct-

New re-entered password is masked with asterisk (*) sym-

ly

bols

5 User clicks OK

System displays message “Password changed successfully”

Table B.49 — Test cases for use case testing continued

Use Case Name

change_password

Test Case Name

Alternative Flow - Existing Password Incorrect

Description User attempts to change password but enters their current password incorrectly
Actors User
Test Coverage Item TCOND2

Use Case Steps Covered

1,2,31,3.2,3.3,34,3.5

Preconditions

User is already logged into the system

|Step

Expected Result

User clicks Change Password button

System displays Change Password screen

Current password is masked with asterisk (*) symbols

1
2 |User enters current password incorrectly
3

User enters their new password correctly

New password is masked with asterisk (*) symbols

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

97

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.49 (continued)

4 |User enters their new password correctly

New password is masked with asterisk (*) symbols

5 User clicks OK

System displays error message “Current password entered
incorrectly. Please try again.”

Table B.50 — Test cases for use case testing continued

Use Case Name

change_password

Test Case Name

Alternative Flow - New Password Less Than 8 Characters

Description User attempts to change password but enters less than 8 characters for password
Actors User
Test Coverage Item TCOND3

Use Case Steps Covered

1,2,3,41,4.2,4.3

Preconditions

User is already logged into the system

|Step

Expected Result

1 |User clicks Change Password button

System displays Change Password screen

2 |User enters their current password cor- Current password is masked with asterisk (*) symbols
rectly
3 |User enters a new password that is less New password is masked with asterisk (*) symbols

than 8 characters long

4 User clicks OK

System displays an error message “New password must be at
least 8 characters long. Please try again.”

Table B.51 — Test cases for use case testing continued

Use Case Name

change_password

Test Case Name

Alternative Flow - New Password Same as Current Password

Description User attempts to change password but enters new password matching old pass-
word

Actors User

Test Coverage Item TCOND4

Use Case Steps Covered

1,2,3,51,52,5.3

Preconditions

User is already logged into the system

|Step

Expected Result

1 |User clicks Change Password button

System displays Change Password screen

rectly

2 |User enters their current password cor-

Current password is masked with asterisk (*) symbols

3 |User enters a new password that is the
same as their current password

New password is masked with asterisk (*) symbols

4 User clicks OK

System displays error message “New password must not be
the same as current password. Please try again.”

Table B.52 — Test cases for use case testing continued

Use Case Name

change_password

Test Case Name

Alternative Flow - New Passwords Do Not Match

Description User attempts to change password but their new passwords do not match
Actors User
98 © ISO/IEC 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

© IEEE 2015 - All rights reserved

ISO/IEC/IEEE 29119-4:2015(E)

Table B.52 (continued)

Test Coverage Item TCOND5

Use Case Steps Covered 1,2,3,4,6.1,6.2,6.3

Preconditions User is already logged into the system

|Step Expected Result

1 |User clicks Change Password button System displays Change Password screen

2 Userl enters their current password cor- Current password is masked with asterisk (*) symbols
rectly

User enters their new password correctly |New password is masked with asterisk (*) symbols

User re-enters new password that does not |Re-entered password is masked with asterisk (*) symbols
match new password entered at step 3

5 |User clicks OK System displays error message “New passwords do not
match. Please try again.”

B.2.9.3.7 Step 5: Assemble Test Sets (TD5)

Tests could be grouped according to whether they cover the typical or alternative scenarios:
TS1: TEST CASE 1.
TS2: TEST CASES 2, 3, 4, 5.

B.2.9.3.8 Step 6: Derive Test Procedures (TD6)
Only one procedure is required as follows:
TP1: covering the test case in TS1, in the order specified in the test set.

TP2: covering the test cases in TS2, in the order specified in the test set.

B.2.9.3.9 Use Case Testing Coverage

Using the formula for calculating scenario test coverage provided in 6.2.9 and the test coverage items
derived above:

Coverage ,secase) = gx 100%=100%

B.2.10 Random Testing

B.2.10.1 Introduction

The aim of random testing is to derive a set of test cases that cover the input parameters of a test item
using values that are selected according to a chosen input distribution. This technique requires no
partitioning of the input domain of the test item, but simply requires input values to be chosen from this
input domain at random.

B.2.10.2 Specification
Consider a test item that transforms coordinates, with the following test basis:

The component shall transform the Cartesian coordinates (x,y) for screen position into their polar equivalent
(H) using the equations: r= sqrt (x?+y2) and cos H = x/r. The origin of the Cartesian coordinates and the
pole of the polar coordinates shall be the centre of the screen and the x-axis shall be considered the initial

© ISO/IEC 2015 - All rights reserved 99
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

line for the polar coordinates progressing counter-clockwise. All inputs and outputs shall be represented as
fixed-point numbers with both a range and a precision. These shall be:

Inputs
X - range -320..+320, in increments of 1/26
y - range -240..+240, in increments of 1/27
Outputs
r - range 0..400, in increments of 1/26

H - range 0..((2*pi)-1/26), in increments of 1/26

B.2.10.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1: transform coordinates function

B.2.10.4 Step 2: Derive Test Conditions (TD2)

The test conditions in random testing are the domain of all possible inputs from which test input values
can be selected for each input parameter. They are:

TCOND1: x - range -320..+320, in increments of 1/26 (for FS1)

TCONDZ2: y - range -240..+240, in increments of 1/27 (for FS1)

B.2.10.5 Step 3: Derive Test Coverage Items (TD3)

There are no recognised test coverage items from random testing.

B.2.10.6 Step 4: Derive Test Cases (TD4)

Test cases can now be constructed by first choosing an input distribution and then applying that input
distribution to each test condition and determining the expected result of each test case (shown as
‘output’ for the two output parameters v’ and ‘H’ in the table below). Since no information is available
about the operational distribution of the input parameters to the test item in this example, a uniform
distribution is chosen. From the definitions we can see that in any one randomly chosen input for x can
take one of 41,024 values (641 x 26), while y can take one of 61,568 values (481 x 27). Care should be taken
if using an expected operational distribution rather than a uniform distribution. An expected distribution
that ignores parts of the input domain can lead to unexpected error conditions being left untested.

Since each test case must include selection of a random test input value from the test conditions for
both x and y, each test case will cover both test conditions. In a uniform distribution, all input values
within the define ranges of x and y have equal probability of being selected as inputs into the test case.
For example, the following four test cases could be defined.

Table B.53 — Test cases for random testing

Test Case 1 2 3 4

Input (x) -126.125 11.015625 283.046875 -99.109375

Input (y) 238.046875 78.03125 -156.054688 -9.0625

Test Condition TCOND1 TCOND1 TCOND1 TCOND1
TCOND2 TCOND2 TCOND2 TCOND2

Output r calculated as (r= sqrt (x2+y?2)) 269.395305 78.804949 323.216025 99.522847

100 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table B.53 (continued)

Test Case 1 2 3 4
Output H calculated as (cos H = x/r)) 2.058024 1.430554 0.503870 3.050407

B.2.10.7 Step 5: Assemble Test Sets (TD5)

If we assume that all test cases must be executed manually and in the order that they were defined in
the test case table, then we could define one test set as follows:

TS1: Manual Testing - TEST CASES 1, 2, 3, 4.

B.2.10.8 Step 6: Derive Test Procedures (TD6)
Since there is only one test set to execute, it is sensible to define one test procedure as follows:

TP1: manual testing, covering all test cases in TS1, in the order specified in the test set.

B.2.10.9 Random Testing Coverage

As stated in 6.2.10, there is currently no industry agreed approach for calculating coverage of test
coverage items for random testing.

B.2.10.10 Automating Random Testing

Random testing may be performed either manually or using automation. Random testing is most
cost-effective when fully automated as then very many tests can be run without manual intervention.
However, to achieve full automation it must be possible to:

— automatically generate random test inputs; and
— either automatically generate expected results from the test basis; or
— automatically check test outputs against the test basis.

The automatic generation of random test input values is not difficult using a pseudo-random number
generator as long as the test item’s inputs are well-defined. If the test input values are produced using a
pseudo-random number generator, then these values do not need to be recorded explicitly as the same
set can be reproduced. This is normally possible if a “seed” value has been used to prime the pseudo-
random number generator and this value is recorded.

The automatic generation of expected outputs or the automatic checking of outputs, is however more
problematic. Generally it is not practicable to automatically generate expected outputs or automatically
check outputs against the test basis, however for certain test items it is possible, such as where:

— trusted independently-produced software that performs the same function as the test item is
available (presumably not meeting the same constraints such as speed of processing, implementation
language, etc.);

— the test is concerned solely with whether the test item crashes or not (so the expected result is
“not to crash”);

— the nature of the test item’s output makes it relatively easy to check the result. An example of
this is a sort function where it is a simple task to automatically check that the outputs have been
sorted correctly;

— it is easy to generate inputs from the outputs (using the inverse of the test item’s function). An
example of this is a square root function where simply squaring the output should produce the input.

In the example in B.2.10.2, the coordinate transformation test item can be checked automatically using
the inverse function approach. In this case, rcosH=x can be obtained directly from the test basis for

© ISO/IEC 2015 - All rights reserved 101
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

the test item. By some analysis rsinH=y can also be deduced. If these two equations are satisfied to a
reasonable numerical tolerance then the test item has transformed the coordinates correctly.

Even when full automation of random testing is not practicable its use should still be considered as it
does not carry the large overhead of designing test cases as required by the non-random techniques.

For test items with larger input sets than this small example the “Symbolic Input Attribute
Decomposition” (SIAD) tree (Cho 1987) is a useful method for organising the input domain for random
sampling before test case design.

102 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Annex C
(informative)

Guidelines and Examples for the Application of Structure-Based
Test Design Techniques

C.1 Guidelines and Examples for Structure-Based Testing

C.1.1 Overview

This annex provides guidance and examples on the structure-based test design techniques described
in 5.3 and 6.3. Each example follows the Test Design and Implementation Process that is defined in
ISO/IEC/IEEE 29119-2. A variety of applications and programming languages are used in these
examples. Although each example is applied in a structure-based testing context, as stated in 5.1, in
practice most of the techniques defined in this part of ISO/IEC/IEEE 29119 can be used interchangeably.

C.2 Structure-Based Test Design Technique Examples

C.2.1 Statement Testing

C.2.1.1 Introduction

The aim of statement testing is to derive a set of test cases that cover the statements of the test item
according to a chosen level of statement coverage. This structural test design technique is based upon
the decomposition of the test item into constituent statements.

The two principal questions to consider are:
— whatis a statement?
— which statements are executable?

In general a statement should be an atomic action; that is a statement should be executed completely or
not at all. For instance:

IF a THEN b ENDIF

is considered as more than one statement since b may or may not be executed depending upon the
condition a. The definition of statement used for statement testing need not be the one used in the
language definition.

We would expect statements which are associated with machine code to be regarded as executable. For
instance, we would expect all of the following to be regarded as executable:

— assignments;

— loops and selections;

— procedure and function calls;

— variable declarations with explicit initializations;

— dynamic allocation of variable storage on a heap.

© ISO/IEC 2015 - All rights reserved 103
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

However, most other variable declarations can be regarded as non-executable. Consider the
following code:

a;
if (b) {
c;

}
d;

Any test case with b TRUE will achieve full statement coverage. Note that full statement coverage can
be achieved without exercising with b FALSE.

C.2.1.2 Specification

Consider the following test item in the Ada programming language, which is designed to categorise
positive integers into prime and non-prime, and to give factors for those which are non-prime:

1 READ (Num) ;

2 WHILE NOT End of File DO

3 Prime := TRUE;

4 FOR Factor := 2 TO Num DIV 2 DO

5 IF Num - (Num DIV Factor)*Factor = 0 THEN
6 WRITE (Factor, °~ is a factor of’, Num);
7 Prime := FALSE;

8 ENDIF;

9 ENDFOR;

10 IF Prime = TRUE THEN

11 WRITE (Num, °~ is prime’);

12 ENDIF;

13 READ (Num) ;

14 ENDWHILE;
15 WRITE (End of prime number program’) ;

C.2.1.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1: Identify prime and non-prime numbers function

C.2.1.4 Step 2: Derive Test Conditions (TD2)

Test conditions in statement testing are the executable statements in the code. By numbering each
line of code, this illustrates test condition numbers. For example, statement 1 allows definition of one
test condition:

TCOND1: READ (Num) ; Statement 1 (for FS1)

The remaining test conditions can be defined without repeating the source code each test condition
relates to:

TCOND2: Statement 2 (for FS1)
TCOND3: Statement 3 (for FS1)
TCOND4: Statement 4 (for FS1)
TCOND5: Statement 5 (for FS1)
TCONDG: Statement 6 (for FS1)
TCOND?7: Statement 7 (for FS1)
TCONDS: Statement 10 (for FS1)
104 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

TCONDO: Statement 11 (for FS1)
TCOND10: Statement 13 (for FS1)
TCOND11: Statement 15 (for FS1)

C.2.1.5 Step 3: Derive Test Coverage Items (TD3)

The test coverage items in statement testing are the same as the test conditions:

TCOVERT1: Statement 1 (for TCOND1)
TCOVER2: Statement 2 (for TCONDZ2)
TCOVER3 Statement 3 (for TCOND3)
TCOVER4: Statement 4 (for TCOND4)
TCOVERS: Statement 5 (for TCONDS)
TCOVERG6: Statement 6 (for TCOND®6)
TCOVER7: Statement 7 (for TCOND7)
TCOVERS: Statement 10 (for TCONDS)
TCOVERO: Statement 11 (for TCOND9)
TCOVER10: Statement 13 (for TCOND13)
TCOVER11: Statement 15 (for TCOND11)

C.2.1.6 Step 4: Derive Test Cases (TD4)

In statement testing, each statement must be covered by at least one test case. Test cases are derived
by first identifying sub-paths in the control flow graph that execute one or more executable statements
that have not yet been covered by a test case. The inputs to execute the sub-path are then identified,
along with the expected result. This process is repeated until the required level of test coverage is
achieved. In this particular example, only one test case is required to cover all statements in the code,
because the iteration in the code that allows it to be covered by just two input values (i.e. to achieve
100% statement coverage).

Table C.1 — Test cases for statement testing

Test Case Input Expected Result Test Coverage Items
1 2 2 is prime 1,2,3,4,9,10,11,12,13, 14
4 2 is a factor of 4 2,3,4,5,6,7,8,9,10,12,13, 14
EOF End of prime number program 2,15
NOTE In this example, there is one test case, but three separate sets of input values and expected results, as

there is an iteration included in the code.

C.2.1.7 Step 5: Assemble Test Sets (TD5)
Since there is only one test case, it can be placed in the one test set as follows:

TS1: TEST CASE 1.

© ISO/IEC 2015 - All rights reserved 105
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.1.8 Step 6: Derive Test Procedures (TD6)
Only one procedure is required as follows:

TP1: covering the test case in TS1.

C.2.1.9 Statement Testing Coverage
Using the formula provided in 6.3.1 and the test coverage items derived above:

11
Coverage siqtement) = el x100%=100%

Thus, 100% coverage of test coverage items for statement testing has been achieved.

C.2.2 Branch / Decision Testing

C.2.2.1 Introduction

Branch and Decision Coverage are closely related. For test items with one entry point 100% Branch
Coverage is equivalent to 100% Decision Coverage, although lower levels of coverage may not be the
same. Both levels of coverage will be illustrated with one example.

C.2.2.2 Specification

The component shall determine the position of a word in a table of words ordered alphabetically. Apart
from the word and table, the component shall also be passed the number of words in the table to be
searched. The component shall return the position of the word in the table (starting at zero) if it is
found, otherwise it shall return “-1”.

The corresponding code is drawn from (Kernighan and Richie 1998). The three decisions are highlighted:

int binsearch (char *word, struct key tab[], int n) {
int cond;
int low, high, mid;
low = 0;
high = n - 1;
while (low <= high) ({
mid = (low+high) / 2;
if ((cond = strcmp(word, tab[mid].word)) < 0)
high = mid - 1;
else if (cond > 0)
low = mid + 1;
else
return mid;
}
return -1;

}
C.2.2.3 Step 1: Identify Feature Sets (TD1)

As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1: binsearch function
C.2.2.4 Step 2: Derive Test Conditions (TD2)

C.2.2.4.1 Options for Derivation of Test Conditions

The identification of test conditions for branch/decision testing may be demonstrated by creating a
control flow graph of the program. The first step to constructing a control flow graph for a procedure is
to divide it into basic blocks. These are sequences of instructions with no branches into the block (except

106 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

to the beginning) and no branches out of the block (except at the end). The statements within each basic
block will be executed together or not at all. The program above has the following basic blocks:

int binsearch (char *word, struct key tab[], int n) {

int cond;

int low, high, mid;
Bl low = 0;

high = n - 1;
B2 while (low <= high) {
B3 mid = (low+high) / 2

if ((cond = strcmp(word, tab[mid].word)) < 0)
B4 high = mid - 1;
BS else if (cond > 0)
B6 low = mid + 1;
B7 else
return mid;

BS }
B9 return -1;

}
A control flow graph may be constructed by making each basic block a node and drawing an arc for each
possible transfer of control from one basic block to another. These are the possible transfers of control:

B1 — B2 B3 —» B4 B5 — B6 B6 — B8
B2 - B3 B3 - B5 B5 — B7 B8 — B2
B2 - B9 B4 — B8

This results in the graph presented in figure C.1. The graph has one entry point, B1, and two exit
points, B7 and B9.

[ee]

OO C

Figure C.1 — Control flow graph for binsearch

Of course, the above control flow graph would not necessarily be constructed by hand, but a tool would
normally be used to show which decisions/branches have been executed.

The test conditions for branch coverage will be different from those for decision coverage. This is
demonstrated under steps 2a and 2b below.

C.2.2.4.2 Option 2a: Derive Test Conditions for Branch Coverage (TD2)

For branch coverage, the test conditions (BRANCH-TCOND) are the branches (arcs) that are represented
by arrows in the control flow graph. There are ten in total, as follows:

BRANCH-TCOND1: B1 —» B2 (for FS1)
BRANCH-TCOND2: B2 - B3 (for FS1)
BRANCH-TCOND3: B2 - B9 (for FS1)
© ISO/IEC 2015 - All rights reserved 107

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

BRANCH-TCOND4: B3 — B4 (for FS1)
BRANCH-TCOND5: B3 - B5 (for FS1)
BRANCH-TCOND6: B4 - B8 (for FS1)
BRANCH-TCOND?: B5 — B6 (for FS1)
BRANCH-TCONDS: B5 — B7 (for FS1)
BRANCH-TCOND9: B6 — B8 (for FS1)
BRANCH-TCOND10: B8 — B2 (for FS1)

C.2.2.4.3 Option 2b: Derive Test Conditions for Decision Coverage (TD2)

For decision coverage, the test conditions (DECISION-TCOND) are the decisions represented as nodes in
the control flow graph that have more than one exit arrow. In this example, there are three test conditions:

DECISION-TCOND1: B2 (for FS1)
DECISION-TCOND2: B3 (for FS1)
DECISION-TCOND3: B5 (for FS1)

C.2.2.5 Step 3: Derive Test Coverage Items (TD3)

C.2.2.5.1 Options for Derivation of Test Coverage Items

The test coverage items for branch coverage will be different from those for decision coverage. This is
demonstrated under steps 3a and 3b below.

C.2.2.5.2 Option 3a: Derive Test Coverage Items for Branch Coverage (TD3)

For branch coverage, the test coverage items are the branches in the control flow graph, which
are the same as the test conditions. In this example there are ten test coverage items for branch
coverage, as follows:

BRANCH-TCOVERT1: B1 - B2 (for BRANCH-TCOND1)
BRANCH-TCOVERZ: B2 - B3 (for BRANCH-TCOND?2)
BRANCH-TCOVERS3: B2 - B9 (for BRANCH-TCOND3)
BRANCH-TCOVER4: B3 —» B4 (for BRANCH-TCOND4)
BRANCH-TCOVERS5: B3 - B5 (for BRANCH-TCOND5)
BRANCH-TCOVER®: B4 — B8 (for BRANCH-TCOND®6)
BRANCH-TCOVER?7: B5 - B6 (for BRANCH-TCOND7)
BRANCH-TCOVERS: B5 —» B7 (for BRANCH-TCONDS8)
BRANCH-TCOVER®9: B6 — B8 (for BRANCH-TCOND9)
BRANCH-TCOVER10: B8 — B2 (for BRANCH-TCOND10)
108 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.2.5.3 Option 3b: Derive Test Coverage Items for Decision Coverage (TD3)

For decision coverage, the outcomes (i.e. true, false) of each decision are the test coverage items. In this
example, each decision has two outcomes corresponding to the true and false values of the decisions;
therefore there are six test coverage items, as follows:

DECISION-TCOVERT1: B2 =true (for DECISION-TCOND1)
DECISION-TCOVERZ2: B2 =false (for DECISION-TCOND1)
DECISION-TCOVERS: B3 =true (for DECISION-TCOND?2)
DECISION-TCOVER4: B3 =false (for DECISION-TCOND?2)
DECISION-TCOVERS: B5 = true (for DECISION-TCOND3)
DECISION-TCOVERG6: B5 = false (for DECISION-TCOND3)

Itis generally possible for a decision to have more than two outcomes, which would increase the number
of test coverage items that need to be derived.

C.2.2.6 Step 4: Derive Test Cases (TD4)

Test cases for branch testing are derived by identifying control flow sub-paths that reach one or more
branches (test coverage items) that have not yet been executed during testing, determining inputs that
exercise those sub-paths, determining the expected result of each test, and repeating until the required
level of test coverage is achieved. Similarly, test cases for decision testing are derived by identifying
control flow sub-paths that reach one or more decision that has not been exercised and determining the
inputs and expected outputs for each test. For both branch coverage and decision coverage, any individual
test of the test item will exercise a sub-path and hence potentially many decisions and branches.

Consider a test case which executes the sub-path B1 -> B2 -> B9. This case arises when n=0, that is,
when the table being searched has no entries. This sub-path executes one decision (B2 -> B9) and hence
provides 1/6 = 16.7% coverage. The path executes 2 out of the 10 branches, giving 20% coverage (which
is not the same as the coverage for decisions).

Consider now a test case which executes the sub-path:
B1-B2-B3-B4—-B8—-B2—-B3—-B5-B6—B8—-B2—-B3—-B5-B7

This sub-path arises when the search first observes that the entry is in the first half of the table, then
the second half of that (i.e., 2nd quarter) and then finds the entry. Note that the two test cases provide
100% decision and branch coverage.

These test cases are shown below:

Table C.2 — Test cases for binsearch

Test Inputs Decisions Exercised Test Coverage Items Expected
Case | Word Tab n (underlined) Result
1 chas Alf 7 |B1-B2—-B3—-B4—->B8— BRANCH-TCOVER 2
Bert B2 ->B3—->B5—->B6—-B8- 1,2,4,5,6,7,8,9,10 and
B2~ B3~ B5~B7 DECISION-TCOVER 1,3, 4,5, 6
Chas
Dick
Eddy
Fred
Geoff
© ISO/IEC 2015 - All rights reserved 109

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table C.2 (continued)

Test Inputs Decisions Exercised Test Coverage Items Expected
Case | Word Tab n (underlined) Result
2 chas | ‘empty 0 B1 - B2 - B9 BRANCH-TCOVER 1, 3 and -1
table DECISION-TCOVER 2

Branch and decision coverage are both normally measured using a software tool.

C.2.2.7 Step 5: Assemble Test Sets (TD5)
Since there are only two test cases required, we may choose to combine them into the one test set.

TS1: TEST CASES 1 and 2.

C.2.2.8 Step 6: Derive Test Procedures (TD6)
Again, since there are only two test cases and one test set, we may choose to define only one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

C.2.2.9 Branch Testing Coverage

Using the formula provided in 6.3.2 and the test coverage items derived above:
10
Coverage prancn) = I x100%=100%

Thus, 100% coverage of test coverage items for branch testing has been achieved.

C.2.2.10 Decision Testing Coverage

Using the formula provided in 6.3.3 and the test coverage items derived above:
6
Coverage gecision) = P 100%=100%

Thus, 100% coverage of test coverage items for decision testing has been achieved.

C.2.3 Branch Condition Testing, Branch Condition Combination Testing and Modified
Condition Decision Coverage (MCDC) Testing

C.2.3.1 Introduction

Branch Condition Testing, Branch Condition Combination Testing, and Modified Condition Decision
Coverage Testing are closely related, as are the associated coverage measures. The aim of these three
test design techniques is to derive a set of test cases that cover the conditions within decisions of
the test item according to a chosen level of coverage. For convenience, these test case design and test
coverage measurement approaches are demonstrated using one example.

C.2.3.2 Specification

Consider the following fragment of code:

if A or (B and C) then
do_something;
else
do something else;
end if;

110 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

The Boolean conditions within the decision condition are A, B and C. These may themselves be
comprised of complex expressions involving relational operators. For example, the Boolean condition A
could be an expression such as X>=Y. However, for the sake of clarity, the following examples regard A,
B and C as simple Boolean conditions.

C.2.3.3 Step 1: Identify Feature Sets (TD1)

Since the example for all three test design techniques is based on the same test item (the code fragment
above), one feature set can be defined for demonstration in all three techniques:

FS1: condition code fragment

C.2.3.4 Step 2: Derive Test Conditions (TD2)

In these three test design techniques, each decision in the control flow graph is a test condition. In this
example, there is one decision:

TCOND1: A or (B and C) (for FS1)

This test condition is applicable to Branch Condition Testing, Branch Condition Combination Testing,
and Modified Condition Decision Coverage Testing.

C.2.3.5 Branch Condition Testing

C.2.3.5.1 Step 3: Derive Test Coverage Items (TD3)

Branch condition testing examines the individual conditions within multi-condition decisions, with
the aim that each individual condition and each decision takes on both true and false values. The test
coverage items are the Boolean values (true/false) of the conditions within decisions. In this example,
this technique would require Boolean condition A to be evaluated both TRUE and FALSE, Boolean
condition B to be evaluated both TRUE and FALSE and Boolean condition C to be evaluated both TRUE
and FALSE. Therefore, the test coverage items for this technique are:

TCOVERT: A =TRUE (for TCOND1)
TCOVERZ2: A =FALSE (for TCOND1)
TCOVER3 B = TRUE (for TCOND1)
TCOVER4: B = FALSE (for TCOND1)
TCOVERS: C = TRUE (for TCOND1)
TCOVERG: C = FALSE (for TCOND1)
TCOVER7: Aor (Band C) =TRUE (for TCOND1)
TCOVERS: Aor (Band C) = FALSE (for TCOND1)

C.2.3.5.2 Step 4: Derive Test Cases (TD4)

Branch condition coverage test cases are derived by identifying control flow sub-paths that reach one
or more test coverage items that have not yet been executed during testing, determining the inputs that
will execute those sub-paths and the expected result of the test and repeating until all the required
coverage is achieved. In this example, this can be achieved with the following set of test inputs (note
that there are alternative sets of test inputs which will also achieve branch condition coverage):

© ISO/IEC 2015 - All rights reserved 111
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table C.3 — Test cases for Branch Condition Testing

Test Case A B C Aor (Band (C) Test Coverage Items
1 FALSE FALSE FALSE FALSE TCOVER 2,4, 6
2 TRUE TRUE TRUE TRUE TCOVER 1, 3,5
NOTE The test cases contained in the table above are not “complete” in that they do not include expected
results.

Branch condition coverage can often be achieved with just two test cases, irrespective of the number of
actual Boolean conditions comprising the overall condition.

C.2.3.5.3 Step 5: Assemble Test Sets (TD5)
Since there are only two test cases required, we may choose to combine them into the one test set.

TS1: TEST CASES 1 and 2.

C.2.3.5.4 Step 6: Derive Test Procedures (TD6)
Again, since there are only two test cases and one test set, we may choose to define only one test procedure.

TP1: covering all test cases in TS1, in the order specified in the test set.

C.2.3.5.5 Branch Condition Testing Coverage

Using the formula provided in 6.3.4 and the test coverage items derived above:
8
Coverage pranch_condition) = P 100%=100%

Thus, 100% coverage of test coverage items for branch condition testing has been achieved.
C.2.3.6 Branch Condition Combination Testing

C.2.3.6.1 Step 3: Derive Test Coverage Items (TD3)

In branch condition combination testing, the test coverage items are the unique combinations of Boolean
values of conditions within decisions. In this example, this technique would require all combinations of
Boolean conditions A, B and C to be evaluated. Therefore, the test coverage items for this technique are:

TCOVERT1: A = FALSE, B = FALSE, C=FALSE (for TCOND1)
TCOVERZ2: A =TRUE, B = FALSE, C=FALSE (for TCOND1)
TCOVER3: A = FALSE, B =TRUE, C =FALSE (for TCOND1)
TCOVERA4: A =TRUE, B = TRUE, C=FALSE (for TCOND1)
TCOVERS: A =FALSE, B = FALSE, C=TRUE (for TCOND1)
TCOVERG6: A =TRUE, B = FALSE, C=TRUE (for TCOND1)
TCOVER?7: A =FALSE, B =TRUE, C=TRUE (for TCOND1)
TCOVERS: A =TRUE, B =TRUE, C=TRUE (for TCOND1)
112 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.3.6.2 Step 4: Derive Test Cases (TD4)

Test cases are derived by identifying control flow sub-paths that reach one or more test coverage items
that have not yet been executed during testing, determining the inputs that will execute those sub-
paths and the expected result of the test and repeating until the required coverage is achieved. In this
example, this can be achieved by deriving the following test cases:

Table C.4 — Test cases for Branch Condition Combination Testing

Test Case A B C Test Coverage Items

1 FALSE FALSE FALSE TCOVER1

2 TRUE FALSE FALSE TCOVER2

3 FALSE TRUE FALSE TCOVER3

4 TRUE TRUE FALSE TCOVER4

5 FALSE FALSE TRUE TCOVERS

6 TRUE FALSE TRUE TCOVER6

7 ALSE TRUE TRUE TCOVER7

8 TRUE TRUE TRUE TCOVERS8
NOTF The test cases contained in the table above are not “complete” in that they do not include expected
results.

Branch Condition Combination Coverage is very thorough, requiring 2n test cases to achieve 100%
coverage of a condition containing n Boolean conditions. This rapidly becomes unachievable for
complex conditions.

C.2.3.6.3 Step 5: Assemble Test Sets (TD5)
It may be decided that all test cases for this technique are combined in to the one test set, as follows:

TS1: TEST CASES 1,2, 3,4,5,6,7,8.

C.2.3.6.4 Step 6: Derive Test Procedures (TD6)
Since there is only one test set, we may choose to define one corresponding test procedure, as follows:

TP1: covering all test cases in TS1, executed in the order specified in the test set.

C.2.3.6.5 Branch Condition Combination Testing Coverage

Using the formula provided in 6.3.5 and the test coverage items derived above:
8 0, 0,
Coverage(branch_condition_combination) = g x100%=100%

Thus, 100% coverage of test coverage items for branch condition combination testing has been achieved.

C.2.3.7 Modified Condition Decision Coverage Testing

Modified Condition Decision Coverage (MCDC) Testing is a pragmatic compromise which requires
fewer test cases than Branch Condition Combination Coverage. It is widely used in the development of
avionics software, as required by RTCA/D0-178C. MCDC Testing requires test cases to show that each
Boolean condition (A, B and C) can independently affect the outcome of the decision. This is less than all
the combinations (as required by Branch Condition Combination Coverage).

© ISO/IEC 2015 - All rights reserved 113
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.3.7.1 Step 3: Derive Test Coverage Items (TD3)

In modified condition decision coverage (MCDC) testing, the test coverage items are the unique
combinations of individual Boolean values of conditions within decisions that allow a single Boolean
condition to independently affect the outcome.

For the example decision condition [A or (B and C)], this leads to a pair of test coverage items,
where changing the state of A will change the outcome, but B and C remain constant, i.e. that A can
independently affect the outcome of the condition, as follows:

TCOVER1: A=FALSE, B = FALSE, C=TRUE OUTCOME = FALSE (for TCOND1)
TCOVER2: A =TRUE, B = FALSE, C=TRUE OUTCOME = TRUE (for TCOND1)

Similarly for B, we require a pair of test cases which show that B can independently affect the outcome,
with A and C remaining constant:

TCOVER3: A =FALSE, B = FALSE, C=TRUE OUTCOME = FALSE (for TCOND1)
TCOVER4: A=FALSE, B = TRUE, C=TRUE OUTCOME = TRUE (for TCOND1)

Finally for C we require a pair of test cases which show that C can independently affect the outcome,
with A and B remaining constant:

TCOVERS: A =FALSE, B = TRUE, C=FALSE OUTCOME = FALSE (for TCOND1)
TCOVER6: A =FALSE, B = TRUE, C=TRUE OUTCOME = TRUE (for TCOND1)

Having created these pairs of test conditions for each decision condition separately, it can be seen that
TCOVER1 and TCOVER3 are the same, and that TCOVER4 and TCOVER®6 are the same. Therefore, the
duplicate test conditions TCOVER3 and TCOVER6 will not be used as a basis for deriving test cases in
the next step.

C.2.3.7.2 Step 4: Derive Test Cases (TD4)

Test cases are derived by identifying control flow sub-paths that reach one or more test coverage items
that have not yet been executed during testing, determining the inputs that will execute those sub-
paths and the expected result of the test and repeating until all the required coverage is achieved. In
this example, this can be achieved with the following set of test cases:

NOTE The test cases contained in the table below are not “complete” in that they do not include expected
results.

Table C.5 — Overall set of test cases

Test Case A B C Expected Result Test Coverage Items
1 FALSE FALSE TRUE FALSE TCOVER1, TCOVER3
2 TRUE FALSE TRUE TRUE TCOVER2
3 FALSE TRUE TRUE TRUE TCOVER4, TCOVER6
4 FALSE TRUE FALSE FALSE TCOVERS5

In summary:
— Ais shown to independently affect the outcome of the decision condition by test cases 1 and 2;
— Bis shown to independently affect the outcome of the decision condition by test cases 1 and 3; and

— Cis shown to independently affect the outcome of the decision condition by test cases 3 and 4.

114 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Note that there may be alternative solutions to achieving MCDC. For example, A could have been shown
to independently affect the outcome of the condition by the following pair of test cases:

Table C.6 — Alternative MCDC test cases

Case A B C Outcome
X FALSE TRUE FALSE FALSE
Y TRUE TRUE FALSE TRUE

Test case X is the same as test case 4 above, but test case Y is one which has not been previously used.
However, as MCDC has already been achieved, test case Y is not required for coverage purposes.

To achieve 100% Modified Condition Decision Coverage requires a minimum of n+1 test cases, and a
maximum of 2n test cases, where n is the number of Boolean conditions within the decision condition. In
contrast, Branch Condition Combination Coverage requires 2n test cases. MCDC is therefore a practical
low-risk compromise with Branch Condition Combination Coverage where condition expressions
involve more than just a few Boolean conditions.

C.2.3.7.3 Step 5: Assemble Test Sets (TD5)

It may be assumed that all test cases defined in Table C.5 for this technique are combined into the one
test set, as follows:

TS1: TESTCASES1,?2, 3, 4.

C.2.3.7.4 Step 6: Derive Test Procedures (TD6)
Since there is only one test set, we may choose to define one corresponding test procedure, as follows:

TP1: covering all test cases in TS1, in the order specified in the test set.

C.2.3.7.5 Modified Condition Decision Coverage Testing Coverage

Using the formula provided in 6.3.6 and the test coverage items derived above:

4
Coverage(mod ified_condition_decision_cov erage) = % x100%=100%
Thus, 100% coverage of test coverage items for MCDC testing has been achieved.

C.2.3.8 Other Boolean Expressions

One weakness of these three test design techniques and test coverage measurement approaches is that
they are vulnerable to the placement of Boolean expressions when control decisions are placed outside
of the actual decision condition. For example:

FLAG := A or (B and C);
if FLAG then

do something;
else

do something else;
end if;

To combat this vulnerability, a practical variation of these three test design techniques and coverage
measures is to design tests for all Boolean expressions, not just those used directly in control flow
decisions.

© ISO/IEC 2015 - All rights reserved 115
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.3.9 Optimised Expressions

Some programming languages and compilers “short circuit” the evaluation of Boolean operators by
ignoring any part of an expression that does not have a direct impact on the outcome of that expression.

For example, the C and C++ languages always short circuit the Boolean “and” (&&) and “or” (||)
operators, and the Ada programming language provides special short circuit operators and then and
or else. With these examples, when the outcome of a Boolean operator can be determined from the first
condition, then the second condition will not be evaluated.

The consequence is that it will be infeasible to show coverage of one value of the second condition. For a
short circuited “and” operator, the feasible combinations are True:True, True:False and False:X, where X is
unknown. For a short circuited “or” operator, feasible combinations are False:False, False:True and True:X.

Other languages and compilers may short circuit the evaluation of Boolean operators in any order. In
this case, the feasible combinations are not known. The degree of short circuit optimisation of Boolean
operators may depend upon compiler switches or may be outside the user’s control.

Short circuited control forms present no obstacle to Branch Condition Coverage or Modified Condition
Decision Coverage, but they do obstruct measurement of Branch Condition Combination Coverage.
There are situations where it is possible to design test cases which should achieve 100% coverage (from
a theoretical point of view), but where it is not possible to actually measure that 100% coverage has
been achieved.

C.2.3.10 Other Branches and Decisions

The above descriptions of branch condition testing, branch condition combination testing and MCDC
testing and their corresponding coverage measures are given in terms of branches or decisions which
are controlled by Boolean conditions. Other branches and decisions, such as multi-way branches
(implemented by “case”, “switch” or “computed goto” statements), and counting loops (implemented
by “for” or “do” loops without any conditions) do not use Boolean conditions, and are therefore not

addressed by the descriptions.

One way of handling this scenario is to use one of these three test design techniques and its associated
coverage measure as a supplement to branch testing and branch or decision coverage. Branch testing
will address all simple decisions, multi-way decisions, and all loops. Condition testing will then address
the decisions which include Boolean conditions.

In practice, test cases that achieve 100% coverage by one of these options will also achieve 100% coverage
by the other option. However, lower levels of coverage cannot be compared between the two options.

C.2.4 Data Flow Testing

C.2.4.1 Introduction

The aim of data flow testing is to derive a set of test cases that cover the paths between definitions
and uses of variables in a test item according to a chosen level of definition-use coverage. Data flow
testing is a structure-based test design technique which aims to execute sub-paths from points where
each variable in a test item is defined to points where it is referenced. These sub-paths are known as
definition-use pairs. The different data flow coverage criteria require different definition-use pairs and
sub-paths to be executed. Test sets are generated here to achieve 100% coverage (where possible) for
each of those criteria.

NOTE Data flow testing needs to define the data objects considered. Tools will typically regard an array or

record as a single data item rather than as a composite item with many constituents. Ignoring the constituents of
composite objects reduces the effectiveness of data flow testing.

C.2.4.2 Specification

Consider the data flow testing of the following test item in the Ada programming language:

116 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

procedure Solve Quadratic(A, B, C: in Float;

is

ISO/IEC/IEEE 29119-4:2015(E)

Is Complex: out Boolean; R1, R2: out Float)

-- Is Complex is true if the roots are not real.

-- If the two roots are real,

Discrim : Float

R1, R2: Float;
begin
if Discrim < O.
Is Complex :
else
Is Complex :
end if;

= B*B - 4.0*A*C;

then
true;

false;

if not Is Complex then

R1
R2
end if;

end Solve Quadratic;

(-B + Sgrt(Discrim))/
(-B - Sqgrt(Discrim))/

(2.0*R)
(2.0*A)

they are produced in R1, R2.

’

’

O ~Jo U W

[S S o)
wN o

Note that the second line is not a definition (of R1 and R2) but a declaration. (For languages with default
initialisation, it would be a definition.)

C.2.4.3 Step 1: Identify Feature Sets (TD1)

Since there is only one function under test, there is one feature set that can be defined:

FS1: Solve_Quadratic function

C.2.4.4 Step 2: Derive Test Conditions (TD2)

The first step is to list the variables used in the test item. These are: A, B, C, Discrim, [s_Complex, R1 and
R2. Next, each occurrence of a variable in the test item is cross referenced against the program listing

and assigned a category (definition, predicate-use or computation-use).

Table C.7 — Occurrence of variables and their categories

Category
Line definition c-use p-use
0 A,B,C
1 Discrim A B, C
2
3
4 Discrim
5 Is_Complex
6
7 Is_Complex
8
9 Is_Complex
10 R1 A, B, Discrim
11 R2 A, B, Discrim
12
13 R1, R2, Is_Complex

The test conditions are the definition-use pairs.

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

117

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

The next step is to identify the definition-use pairs and their type (c-use or p-use), each of which are
test coverage items, by identifying links from each entry in the definition column to each later entry for
that variable in the c-use or p-use column.

Table C.8 — definition-use pairs and their type

Definition-use pair Variables Test
(startline — end line) c-use p-use Conditions

0-1 A TCOND1

B TCOND?2

C TCOND3

0-10 A TCOND4

B TCOND5

0-11 A TCOND6

B TCOND7

1-4 Discrim TCONDS8

1-10 Discrim TCOND9
1-11 Discrim TCOND10

5-9 Is_Complex TCOND11

7-9 Is_Complex TCOND12

10 - 13 R1 TCOND13
11-13 R2 TCOND14
5-13 Is_Complex TCOND15
7-13 Is_Complex TCOND16

Note that it is not always necessary to derive all of the def-use pairs (as has been done here) in order to
proceed with deriving the test coverage items (depending on the technique being used).

C.2.4.5 All-Definitions Testing

C.2.4.5.1 Step 3a: Derive Test Coverage Items (TD3) - All-Definitions Testing

In all-definitions testing, the test coverage items are the control flow sub-paths from a variable
definition to some use (either p-use or c-use) of that definition.

The following table shows one set of def-use pairs that meet this criterion.

Table C.9 — All-Definitions Testing

Test Coverage All-Definitions
Items Variables definition-use pair Test Conditions
TCOVER1 A 0-1 TCOND1
TCOVER2 B 0-1 TCOND2
TCOVER3 C 0-1 TCOND3
TCOVER4 Discrim 1-4 TCONDS8
TCOVERS5 Is_Complex 5-9 TCOND11
TCOVER6 Is_Complex 7-9 TCOND12
TCOVER7 R1 10 - 13 TCOND13
TCOVERS8 R2 11-13 TCOND14
118 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.4.5.2 Step 4a: Derive Test Cases (TD4) - All-Definitions Testing

Test cases are derived by identifying control flow sub-paths that reach one or more test coverage items
that have not yet been executed during testing, determining the inputs that will execute those sub-
paths and the expected result of the test and repeating until the required coverage is achieved. To
achieve 100% all-definitions data flow coverage at least one sub-path from each variable definition to
some use of that definition (either p-use or c-use) must be executed. The following test set would satisfy
this requirement:

Table C.10 — Test Cases for All-Definitions Testing

All-Definitions INPUTS EXPECTED RESULT
Defini-
Test tion-use Sub- Test Coverage
Case | Variables pairs paths Items A | B | C | Is_Complex R1 R2
1 Is_Complex 7-9 7-8-9 TCOVER6 1121 FALSE -1 -1
R1 10-13 |10-11-12- TCOVER7
13
R2 11-13 11-12-13 TCOVERS8
2 A,B,C, 0-1 0-1 TCOVER1, 1 1 1 TRUE unass. | unass.
TCOVERZ2,
TCOVER3
Discrim 1-4 1-2-3-4 TCOVER4
Is_Complex 5-9 5-8-9 TCOVERS

C.2.4.5.3 All-Definitions Testing Coverage

Using the formula provided in 6.3.7.1 and the test coverage items derived above:
8
Coverage qji _definitions) = 8~ 100%=100%
Thus, 100% coverage of test coverage items for all-definitions testing has been achieved.
C.2.4.6 All-C-Uses Testing

C.2.4.6.1 Step 3b: Derive Test Coverage Items (TD3) - All-C-Uses Testing

In all-c-uses testing, the test coverage items are the control flow sub-paths from a variable definition to
every c-use of that definition. The following table shows one set of def-use pairs that meet this criterion.

Table C.11 — All-C-Uses Testing

All-C-Uses
Test Coverage Definition-use
Items Variable pair Sub-path Test Conditions
TCOVER1 A 0-1 0-1 TCOND1
TCOVER2 B 0-1 0-1 TCOND2
TCOVER3 C 0-1 0-1 TCOND3
TCOVER4 A 0-10 0-1-2-3-4-6-7-8-9-10 TCOND4
TCOVERS B 0-10 0-1-2-3-4-6-7-8-9-10 TCONDS5
TCOVER6 A 0-11 0-1-2-3-4-6-7-8-9-10-11 TCOND6
TCOVER7 B 0-11 0-1-2-3-4-6-7-8-9-10-11 TCOND7
© ISO/IEC 2015 - All rights reserved 119

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table C.11 (continued)

All-C-Uses
Test Coverage Definition-use
Items Variable pair Sub-path Test Conditions
TCOVERS8 Discrim 1-10 1-2-3-4-6-7-8-9-10 TCOND9
TCOVER9 Discrim 1-11 1-2-3-4-6-7-8-9-10-11 TCOND10
TCOVER10 R1 10 - 13 10-11-12-13 TCOND13
TCOVER11 R2 11-13 11-12-13 TCOND14
TCOVER12 Is_Complex 5-13 5-8-9-12-13 TCOND15
TCOVER13 Is_Complex 7-13 7-8-9-10-11-12-13 TCOND16

C.2.4.6.2 Step 4b: Derive Test Cases (TD4) - All-C-Uses Testing

Test cases are derived by identifying control flow sub-paths that reach one or more test coverage items
that have not yet been executed during testing, determining the inputs that will execute those sub-
paths and the expected result of the test and repeating until the required coverage is achieved. To
achieve 100% all-c-uses data flow coverage at least one sub-path from each variable definition to every
c-use of that definition must be executed.

Table C.12 — Test Cases for All-C-Uses Testing

All-C-uses INPUTS EXPECTED RESULT
Defini-
Test tion-use Test Coverage
Case | Variables pairs Sub-paths Items A | B | C | Is_Complex R1 R2
1 A,B,C 0-1 0-1 TCOVER1, 1]2 FALSE -1 -1
TCOVER2,
TCOVER3
AB 0-10, |0-1-2-3-4-6- TCOVER4,
7-8-9-10 TCOVERS
AB 0-11 0-1-2-3-4-6- TCOVERS,
7-8-9-10-11 TCOVER7
Discrim 1-10 1-2-3-4-6-7- TCOVERS8
8-9-10
1-11 1-2-3-4-6-7- TCOVER9
8-9-10-11
R1 10-13 | 10-11-12-13 TCOVER10
R2 11-13 11-12-13 TCOVER11
Is_Complex 7> 13 7-8-9-10-11- TCOVER13
12-13
2 Is_Complex 5-13 5-8-9-12-13 TCOVER12 1111 TRUE unass. | unass.

C.2.4.6.3 All-C-Uses Testing Coverage

Using the formula provided in 6.3.7.2 and the test coverage items derived above:

13
Coverage gj1_c—yses) = 3 100%=100%

Thus, 100% coverage of test coverage items for all-c-uses testing has been achieved.

120 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.4.7 All-P-Uses Testing

C.2.4.7.1 Step 3c: Derive Test Coverage Items (TD3) - All-P-Uses Testing

In all-p-uses testing, the test coverage items are the control flow sub-paths from a variable definition to
every p-use of that definition.

The following table shows one set of def-use pairs that meet this criterion.

Table C.13 — All-P-Uses Testing

All-P-Uses
Test Coverage Items Variables Definition-use pair Test Conditions
TCOVER1 Discrim 1-4 TCOND8
TCOVER2 Is_Complex 5-59 TCOND11
TCOVER3 Is_Complex 7-9 TCOND12

C.2.4.7.2 Step 4c: Derive Test Cases (TD4) - All-P-Uses Testing

Test cases are derived by identifying control flow sub-paths that reach one or more test coverage items
that have not yet been executed during testing, determining the inputs that will execute those sub-
paths and the expected result of the test and repeating until the required coverage is achieved. To
achieve 100% all-p-uses data flow coverage at least one sub-path from each variable definition to every
p-use of that definition must be executed. The following test set would satisfy this requirement:

Table C.14 — Test cases for All-P-Uses Testing

All-P-Uses INPUTS EXPECTED RESULT
Defini-
Test tion-use Test Coverage
Case | Variables pair sub-paths Items A | B | C | Is_Complex R1 R2
1 Is_Complex 7-9 7-8-9 TCOVER3 1121 FALSE -1 -1
2 Discrim 1-4 1-2-3-4 TCOVER1 1 (11 TRUE unass. | unass.
Is_Complex 5-9 5-8-9 TCOVER2

C.2.4.7.3 All-P-Uses Testing Coverage

Using the formula provided in 6.3.7.3 and the test coverage items derived above:
3
Coverage qj1_p—yses) = §>< 100%=100%

Thus, 100% coverage of test coverage items for all-p-uses testing has been achieved.
C.2.4.8 All-Uses Testing

C.2.4.8.1 Step 3d: Derive Test Coverage Items (TD3) - All-Uses Testing

In all-uses testing, the test coverage items are control flow sub-paths from a variable definition to every
use (both p-use and c-use) of that definition.

The following table shows one set of def-use pairs that meet this criterion.

© ISO/IEC 2015 - All rights reserved 121
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table C.15 — All-Uses Testing

All-Uses / All DU-Paths
Test Coverage Items Variables d-u pair Sub-path Test Conditions
TCOVER1 A 0-1 0-1 TCOND1
TCOVER2 B 0-1 0-1 TCOND2
TCOVER3 C 0-1 0-1 TCOND3
TCOVER4 A 0-10 0-1-2-3-4-6-7-8-9-10 TCOND4
TCOVERS B 0-10 0-1-2-3-4-6-7-8-9-10 TCONDS5
TCOVER6 A 0-11 0-1-2-3-4-6-7-8-9-10-11 TCOND6
TCOVER7 B 0-11 0-1-2-3-4-6-7-8-9-10-11 TCOND7
TCOVERS8 Discrim 1-4 1-2-3-4 TCOND8
TCOVER9 Discrim 1-10 1-2-3-4-6-7-8-9-10 TCOND9
TCOVER10 Discrim 1-11 1-2-3-4-6-7-8-9-10-11 TCOND10
TCOVER11 Is_Complex 5-9 5-8-9 TCOND11
TCOVER12 Is_Complex 7-9 7-8-9 TCOND12
TCOVER13 R1 10 - 13 10-11-12-13 TCOND13
TCOVER14 R2 11-13 11-12-13 TCOND14
TCOVER15 Is_Complex 5-13 5-8-9-12-13 TCOND15
TCOVER16 Is_Complex 7-13 7-8-9-10-11-12-13 TCOND16

C.2.4.8.2 Step 4d: Derive Test Cases (TD4) - All-Uses Testing

Test cases are derived by identifying control flow sub-paths that reach one or more test coverage items
that have not yet been executed during testing, determining the inputs that will execute those sub-paths
and the expected result of the test and repeating until the required coverage is achieved. To achieve
100% all-uses data flow coverage at least one sub-path from each variable definition to every use of that
definition (both p-use and c-use) must be executed. The following test set would satisfy this requirement:

122 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table C.16 — Test Cases for All-Uses Testing

All-Uses INPUTS EXPECTED RESULT
Test Test Coverage
Case | Variables | d-u pair Sub-paths Items A | B | C | Is_Complex R1 R2
1 A B,C 0-1 0-1 TCOVER1, 11211 FALSE -1 -1
TCOVERZ2,
TCOVER3
AB 0-10 | 0-1-2-3-4-6-7- TCOVER4,
8-9-10 TCOVERS
AB 0—-11 | 0-1-2-3-4-6-7- TCOVERS,
8-9-10-11 TCOVER7
Discrim 1-4 1-2-3-4 TCOVERS8
1-10 | 1-2-3-4-6-7-8- TCOVER9
9-10
1-11 | 1-2-3-4-6-7-8- TCOVER10
9-10-11
Is_Complex | 7-9 7-8-9 TCOVER12
R1 10 - 13 10-11-12-13 TCOVER13
R2 11-13 11-12-13 TCOVER14
Is_Complex | 7—-13 7-8-9-10-11- TCOVER16
12-13
2 Is_Complex | 5-9 5-8-9 TCOVER11 11111 TRUE unass. | unass.
Is_Complex | 5—-13 5-8-9-12-13 TCOVER15

C.2.4.8.3 All-Uses Testing Coverage

Using the formula provided in 6.3.7.4 and the test coverage items derived above:

Coverage i _uses) = %x 100%=100%

Thus, 100% coverage of test coverage items for all-uses testing has been achieved.

C.2.4.9 All-DU-Paths Testing

C.2.4.9.1 Step 3e: Derive Test Coverage Items (TD3) - All-DU-Paths Testing

To achieve 100% all-du-paths data flow coverage every “simple sub-path” from each variable definition
to every use of that definition must be executed. This differs from all-uses in that every simple sub-path
between the definition-use pairs must be executed. At a first glance, it appears as if there are two sub-
paths through the testitem that are not already identified in the all-uses test cases. These are 0-1-4-5-9-10
and 1-4-5-9-10. However, both of these sub-paths are infeasible (and so no test cases can be generated to
exercise them). Thus, they are not considered to be “simple sub-paths” for all-du-paths testing.

Table C.17 — All-DU-Paths Testing

All DU-Paths
Test Coverage
Items Variables d-u pair Sub-path Test Conditions
TCOVER1 A 0-1 0-1 TCOND1
TCOVER2 B 0-1 0-1 TCOND?2
TCOVER3 C 0-1 0-1 TCOND3
© ISO/IEC 2015 - All rights reserved 123

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table C.17 (continued)

Test Coverage All DU-Paths
Items Variables d-u pair Sub-path Test Conditions
TCOVER4 A 0-10 0-1-2-3-4-6-7-8-9-10 TCOND4
TCOVERS B 0-10 0-1-2-3-4-6-7-8-9-10 TCOND5
TCOVER6 A 0-11 0-1-2-3-4-6-7-8-9-10-11 TCOND6
TCOVER7 B 0-11 0-1-2-3-4-6-7-8-9-10-11 TCOND7
TCOVERS Discrim 1-4 1-2-3-4 TCOND8
TCOVER9 Discrim 1-10 1-2-3-4-6-7-8-9-10 TCOND9
TCOVER10 Discrim 1-11 1-2-3-4-6-7-8-9-10-11 TCOND10
TCOVER11 Is_Complex 5-9 5-8-9 TCOND11
TCOVER12 Is_Complex 7-9 7-8-9 TCOND12
TCOVER13 R1 10— 13 10-11-12-13 TCOND13
TCOVER14 R2 11-13 11-12-13 TCOND14
TCOVER15 Is_Complex 5-13 5-8-9-12-13 TCOND15
TCOVER16 Is_Complex 7-13 7-8-9-10-11-12-13 TCOND16

C.2.4.9.2 Step 4e: Derive Test Cases (TD4) - All-DU-Paths Testing
Test cases for all-du-paths can now be derived. The same set of test cases that were derived for all-

uses also achieves the maximum level of test coverage item coverage possible for all-du-paths testing
in this example.

Table C.18 — Test Cases for All-DU-Paths Testing

All DU-Paths INPUTS EXPECTED RESULT
Test Test Coverage
Case | Variables | d-u pair Sub-paths Items A | B | C | Is_Complex R1 R2
1 A, B,C 0-1 0-1 TCOVER1, 1121 FALSE -1 -1

TCOVER2,
TCOVER3
AB 0-10 |0-1-2-3-4-6-7-8- TCOVER4,
9-10 TCOVERS
0-11 |0-1-2-3-4-6-7-8- TCOVERS,
9-10-11 TCOVER7
Discrim 1-4 1-2-3-4 TCOVERS
1-10 | 1-2-3-4-6-7-8- TCOVER9

9-10
Is_Complex | 1-11 |1-2-3-4-6-7-8-9-| TCOVER10

10-11
7-9 7-8-9 TCOVER12
R1 10 -» 13 10-11-12-13 TCOVER13
R2 11-13 11-12-13 TCOVER14
Is_Complex | 7—-13 | 7-8-9-10-11-12- TCOVER16

13
2 Is_Complex | 5-9 5-8-9 TCOVER11 111 TRUE unass. | unass.
Is_Complex | 5-13 5-8-9-12-13 TCOVER15
124 © ISO/IEC 2015 - All rights reserved

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

C.2.4.9.3 All-DU-Paths Testing Coverage

Using the formula provided in 6.3.7.5 and the test coverage items derived above:

16
Coverage qj_qu—paths) = Ex 100%=100%

Thus, 100% coverage of test coverage items for all-du-paths testing has been achieved.

C.2.4.9.4 Step 5: Assemble Test Sets (TD5)

Since the test cases derived for all-uses cover all test coverage items, they will be used as an example
of the identification of test sets. All test cases that cause Is_Complex to compute to FALSE could be
combined into one test set, and all those that compute to TRUE in another test set, as follows:

TS1: TEST CASE 1.
TS2: TEST CASE 2.

C.2.4.9.5 Step 6: Derive Test Procedures (TD6)
All test sets could be combined into the one test procedure to be executed in sequential order, as follows:

TP1: covering all test cases in TS1, followed by those in TS2, in the order specified in the test sets.

© ISO/IEC 2015 - All rights reserved 125
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Annex D
(informative)

Guidelines and Examples for the Application of Experience-Based
Test Design Techniques

D.1 Guidelines and Examples for Experience-Based Testing

D.1.1 Overview

This annex provides guidance on the requirements in 5.4 and 6.4. This clause demonstrates the
application of an experience-based test design technique to an example problem. The example follows
the Test Design and Implementation Process that is defined in ISO/IEC/IEEE 29119-2.

D.2 Experience-Based Test Design Technique Examples

D.2.1 Error Guessing

D.2.1.1 Introduction

The aim of error guessing is to derive a set of test cases that cover likely errors, using a tester’s knowledge
and experience with previous test items. Test cases are derived to exercise each type of error that is
identified by the tester as likely being present in the current test item. This technique would typically
be applied after other specification-based test design techniques such as equivalence partitioning and
boundary value analysis, to supplement the types of errors targeted by those techniques.

D.2.1.2 Specification

Consider the example test item, generate_grading, which was used as the example for boundary value
analysis and which had the following test basis:

The component receives an exam mark (out of 75) and a coursework (c/w) mark (out of 25) as input, from
which it outputs a grade for the course in the range ‘A’ to ‘D’. The grade is generated by calculating the
overall mark, which is sum of the exam and c/w marks, as follows:

greater than or equal to 70 -A

greater than or equal to 50, but less than 70 - ‘B’
greater than or equal to 30, but less than 50 - C’
lessthan30 - D’

Where invalid input(s) are detected (e.g. a mark is outside its expected range) then a fault message (‘FM’) is
generated. All inputs are passed as integers.

D.2.1.3 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1: generate_grading function

126 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

D.2.1.4 Step 2: Derive Test Conditions (TD2)

Test conditions are identified by deriving a list of potential types of errors that may be present in the
test item, based on knowledge and experience of similar errors in other test items that were tested in
the past. For the generate_grading function, the following test conditions may be derived:

TCOND1: enter NULL (for FS1)
TCOND2: enter 0 (for FS1)
TCOND3: enter negative number (for FS1)
TCOND4: enter inputs in reverse order (for FS1)
TCOND5: enter very large number (e.g. 10 digits) (for FS1)
TCONDG6: enter very large string of alphas (e.g. 10 alphas) (for FS1)

D.2.1.5 Step 3: Derive Test Coverage Items (TD3)

Each generic type of defect is a test coverage item (i.e. the test coverage items are the same as the test
conditions). Therefore, the following test coverage items can be defined:

TCOVERT1: enter NULL (for TCOND1)
TCOVER2: enter 0 (for TCOND?2)
TCOVER3: enter negative number (for TCOND3)
TCOVER4: enter inputs in reverse order (for TCOND4)
TCOVERS: enter very large number (e.g. 10 digits) (for TCONDS5)
TCOVER6 enter very large string of alphas (e.g. 10 alphas) (for TCONDG®6)

D.2.1.6 Step 4: Derive Test Cases (TD4)

Test cases can now be derived by selecting a defect type for inclusion in the current test case, identifying
input(s) to exercise the parameters of the test case according to the chosen defect type, determining the
expected result and repeating until all test coverage items are included in a test case. For this example,
this results in the following test cases.

Table D.1 — Test cases for error guessing

Test Case 1 2 3 4

Input (exam mark) NULL 25 NULL

Input (c/w mark) 20 NULL NULL 20

total mark (as calculated) 20 25 NULL 20

Test Coverage Item TCOVER1 exam TCOVER1 TCOVER1 TCOVER2 exam
mark c¢/w mark exam & c¢/w marks mark

Exp. Output ‘FM’ ‘FM’ FM’ ‘FM’

Table D.2 — Test cases for error guessing continued

Test Case 5 6 7 8

Input (exam mark) 25 0 -25 25

Input (c/w mark) 0 0 20 -25

© ISO/IEC 2015 - All rights reserved 127

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table D.2 (continued)

Test Case 5 6 7 8

total mark (as calculated) 25 0 -5 0

Test Coverage Item TCOVER2 TCOVER2 TCOVER3 exam TCOVER3

c¢/w mark exam & c/w marks mark c¢/w mark
Exp. Output ‘FM’ ‘FM’ ‘FM’ ‘FM’
Table D.3 — Test cases for error guessing continued

Test Case 9 10 11 12

Input (exam mark) -25 20 1234567890 25

Input (c/w mark) -50 55 20 1234567890

total mark (as calculated) -75 75 1234567910 1234567915

Test Coverage Item TCOVER3 TCOVER4 TCOVERS exam TCOVERS
exam & c/w mark exam & c/w mark mark c¢/w mark

Exp. Output ‘FM’ ‘FM’ ‘FM’ ‘FM’

Table D.4 — Test cases for error guessing continued

Test Case 13 14 15 16

Input (exam mark) 1234567890 abcdefghij 25 abcdefghij

Input (c/w mark) 1234567890 20 abcdefghij abcdefghij

total mark (as calculated) 2469135780 NULL NULL NULL

Test Coverage Item TCOVERS TCOVER6 exam TCOVER6 TCOVER6

exam & c/w mark mark ¢/w mark exam & c¢/w mark
Exp. Output ‘FM’ ‘FM’ ‘FM’ ‘FM’

D.2.1.7 Step 5: Assemble Test Sets (TD5)

Since all test cases are invalid in that they should cause a fault message to appear, they can all be placed
into the one test set as follows:

TS1: TEST CASES 1,2, 3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16.

D.2.1.8 Step 6: Derive Test Procedures (TD6)

Only one procedure is required as follows:

TP1: covering the test case in TS1, in the order specified in the test set.

D.2.1.9 Error Guessing Test Coverage

As stated in 6.4.1, there is no approach for calculating coverage of test coverage items for error guessing.

128

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

ISO/IEC/IEEE 29119-4:2015(E)

Annex E
(informative)

Guidelines and Examples for the Application of Interchangeable
Test Design Techniques

E.1 Guidelines and Examples for Interchangeable Test Design Techniques

E.1.1 Overview

Although the techniques presented in this standard are classified as structure-based, specification-
based or experience-based, in practice some techniques can be used interchangeably (see 5.1). This
is demonstrated in the following example, which illustrates how branch testing (which is commonly
referred to as a structure-based technique) can be applied for specification-based testing.

E.1.2 Branch Testing as a Specification-Based Technique

E.1.2.1 Specification

Consider the following example specification, which defines a login function that takes a username and
password as input to determine whether the user is valid:

The component shall ask for a username and a password. The user must enter a correct username
followed by a corresponding password to be logged into the system. The user is given three attempts
each and 20 seconds each to enter the username and password. If the user does not enter both the
username and the password within 3 tries each and within 20 seconds each, the system will be locked
and disallow any further attempts to login.

The control flow graph for this component is shown below:

[time > 20 seconds OR try = 3]

[time > 20 seconds

OR try = 3]
Get username /BB\ Get password /BS\ (lo:gr::cll in)
B2 NS [username OK] B4 \/[password OK] B7
[wrong username [wrong password
AND try < 3 AND try <3
AND time < 20 AND time < 20 seconds]
seconds]

Figure E.1 — Control flow graph for a login function

E.1.2.2 Step 1: Identify Feature Sets (TD1)
As there is only one test item defined in the test basis, only one feature set needs to be defined:

FS1: login function

© ISO/IEC 2015 - All rights reserved 129
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

E.1.2.3 Step 2: Derive Test Conditions (TD2)

The control flow graph provides a good overview of the functionality and aids the identification of
test conditions for branch testing. The square blocks in the control flow graph represent segments of
program source code in the component, while the diamonds represent decisions. Arrows out of each
diamond represent decision outcomes. The possible transfers of control are:

B1 - B2 B3 — B4 B5 — B4
B2 - B3 B3 —» B6 B5 - B6
B3 —» B2 B4 — B5 B5 - B7

For branch coverage, the test conditions are the branches (arcs) that are represented by arrows in the
control flow graph. There are nine in total, as follows:

TCOND1: B1 - B2 (for FS1)
TCOND2: B2 - B3 (for FS1)
TCOND3: B3 —» B2 (for FS1)
TCOND4: B3 — B4 (for FS1)
TCONDS5: B3 —» B6 (for FS1)
TCONDG6: B4 — B5 (for FS1)
TCOND?7: B5 — B4 (for FS1)
TCONDS: B5 - B6 (for FS1)
TCONDO: B5 — B7 (for FS1)

E.1.2.4 Step 3: Derive Test Coverage Items (TD3)

For branch coverage, the test coverage items are the branches in the control flow graph, which
are the same as the test conditions. In this example there are nine test coverage items for branch
coverage, as follows:

TCOVER: B1 - B2 (for TCOND1)
TCOVER2: B2 - B3 (for TCOND2)
TCOVER3: B3 - B2 (for TCOND3)
TCOVER4: B3 - B4 (for TCOND4)
TCOVERS: B3 - B6 (for TCOND5)
TCOVERG: B4 - B5 (for TCONDG6)
TCOVER?: B5 — B4 (for TCOND?)
TCOVERS: B5 - B6 (for TCONDS)
TCOVERO: B5 - B7 (for TCOND9)

E.1.2.5 Step 4: Derive Test Cases (TD4)

Test cases for branch testing are derived by identifying control flow sub-paths that reach one or more
branches (test coverage items) that have not yet been executed during testing, determining inputs that

130 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

exercise those sub-paths, determining the expected result of each test, and repeating until the required
level of test coverage is achieved. For branch coverage, any individual test case will exercise one sub-
path and hence potentially many decisions and branches.

Consider a test case that executes the sub-path B1-B2—-B3—-B4—-B5—B7. This case arises when a valid
username and matching password are each provided on the first attempt. The path executes 5 out of
the 9 branches, giving 56% coverage (which is not the same as coverage for the decisions).

Now consider a test case which executes the sub-path B1-B2—-B3—-B2-B3—-B4—-B5—-B4—B5-B6. This
sub-path arises when an invalid username and an incorrect password are provided and the correct
password is not provided within the 20 second time limit. Now all branches have been covered except
for B3—B6. This sub-path can be covered if, for example, and invalid username is provided three times
in a row or waiting too long entering a valid one. Then all branches have been covered, including all
decisions. Note that some conditions within decisions have not been covered.

Test cases to cover each control flow sub-path are shown below:

Table E.1 — Test cases for login function

Inputs

Test Username Password Test Coverage | Expected
Case | Username | Waittime | Password | Wait Time Sub-path Items Result

1 Andy <20 Warhol <20 B1-B2—-B3—-B4 TCOVER], Logged in
—-B5-B7 TCOVERZ2,
TCOVER4,
TCOVERS,
TCOVER9

- - B1-B2—-B3—-B2 TCOVERI1, System
InVAIiD <20 —-B3-B4-B5 TCOVER2, locked
Warhol >21 —B4-B5-B6

- TCOVERS3,

TCOVER4,
TCOVERS,

TCOVER?7,
TCOVERS

3 Brandy =221 - B1-B2—-B3-B6 TCOVER], System
TCOVER2, locked
TCOVERS

2 InVaLiD <20
Andy <20

E.1.2.6 Step 5: Assemble Test Sets (TD5)
Since there are only three test cases required, we may choose to combine them into the one test set:

TS1: TEST CASES 1, 2 and 3.

E.1.2.7 Step 6: Derive Test Procedures (TD6)
Since there are only three test cases and one test set, we may choose to define only one test procedure:

TP1: covering all test cases in TS1, in the order specified in the test set.

© ISO/IEC 2015 - All rights reserved 131
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

E.1.2.8 Branch Testing Coverage

Using the formula provided in 6.3.2 and the test coverage items derived above:
9
Coverage prancn) = 5 x100%=100%

Thus, 100% coverage of test coverage items for branch testing has been achieved.

132 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Annex F
(informative)

Test Design Technique Coverage Effectiveness

F.1 Test Design Technique Coverage Effectiveness

F.1.1 Guidance

Up to this point this standard has provided no guidance on either the choice of test design techniques
or test completion criteria (sometimes known as test adequacy criteria), other than that they should
be selected from Clauses 5 and 6 respectively. The main reason for this is that there is no established
consensus on which techniques and criteria are the most effective. The only consensus is that the
selection will vary as it should be dependent on a number of factors such as risk, criticality, application
area, and cost. Research into the relative effectiveness of test case design and measurement techniques
has, so far, produced no definitive results and although some of the theoretical results are presented
below it should be recognised that they take no account of cost.

There is no requirement to choose corresponding test case design and test coverage measurement
approaches. Specification-based test design techniques are effective at detecting errors of omission,
while structure-based test design techniques can only detect errors of commission. So a test plan could
typically require boundary value analysis to be used to generate an initial set of test cases, while also
requiring 100% branch coverage to be achieved. This diverse approach could, presumably, lead to
branch testing being used to generate any supplementary test cases required to achieve coverage of any
branches missed by the boundary value analysis test case suite.

Ideally the test coverage levels chosen as test completion criteria should, wherever possible, be 100%.
Strict definitions of test coverage levels have sometimes made this level of coverage impracticable,
however the definitions in clause 6 have been defined to allow infeasible coverage items to be discounted
from the calculations thus making 100% coverage an achievable goal.

With test completion criteria of 100% (and only 100%) it is possible to relate some of them in an
ordering, where criteria are shown to subsume, or include, other criteria. One criterion is said to
subsume another if, for all test items and their test bases, every test case suite that satisfies the first
criterion also satisfies the second. For example, branch coverage subsumes statement coverage because
if branch coverage is achieved (to 100%), then statement coverage to 100% will be achieved as well.

It should be noted that the “subsumes” relation described here strictly links test coverage criteria (rather
than test design techniques) and so only provides an indirect indication of the relative effectiveness of
test design techniques.

Not all test coverage criteria can be related by the subsumes ordering and the specification-based and
structure-based criteria are not related at all. A partial ordering of criteria is possible for structure-
based test design techniques, as illustrated in Figure F.1 below, where an arrow from one criterion to
another indicates that the first criterion subsumes the second. Where a test coverage criterion does not
appear in the partial orderings then it is not related to any other criterion by the subsumes relation.

© ISO/IEC 2015 - All rights reserved 133
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

All Paths

AU - All-uses coverage
ACU - All c-uses coverage
@ ADU - All du-paths coverage
APU - All p-uses coverage
BD - Branch/decision coverage
BC - Branch condition coverage
BCC - Branch condition combination coverage
MCDC - Modified condition decision coverage
S - Statement coverage

Figure F.1 — Partial Ordering of Structural Test Coverage Criteria (Reid 1996)

Despite its intuitive appeal the subsumes relation suffers a number of limitations that should be
considered before using it to choose test completion criteria:

— Firstly it relates only a subset of the available test completion criteria and inclusion in this subset
provides no indication of effectiveness, so other criteria not shown in the figure above should still
be considered.

— Secondly, the subsumes relation provides no measure of the amount by which one criterion subsumes
another and subsequently does not provide any measure of relative cost effectiveness.

— Thirdly, the partial orderings only apply to single criteria while it is recommended that more than
one criterion is used, with at least one functional and one structural criterion.

— Finally, and most importantly, the subsumes relation does not necessarily order test completion
criteria in terms of their ability to expose faults (their test effectiveness). It has been shown, for
instance, that 100% path coverage (when achievable) may not be as effective, for some test items,
as some of the criteria it subsumes, such as those concerned with data flow. This is because some
errors are data sensitive and will not be exposed by simply executing the path on which they
lie, but require variables to take a particular value as well (e.g. An “unprotected” division by an
integer variable may erroneously be included in a test item that will only fail if that variable takes
a negative value). Satisfying data flow criteria can concentrate the testing on these aspects of a test
item’s behaviour, thus increasing the probability of exposing such errors. It can be shown that in
some circumstances test effectiveness is increased by testing a subset of the paths required by a
particular criteria but exercising this subset with more test cases.

The subsumes relation is highly dependent on the definition of full coverage for a criterion and although
the figure above is correct for the definitions in Clause 5 it may not apply to alternative definitions
used elsewhere.

134 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Annex G
(informative)

ISO/IEC/IEEE 29119-4 and BS 7925-2 Test Design Technique
Alignment

This annex describes the alignment of the test design techniques in this part of ISO/IEC/IEEE 29119
and BS 7925-2.

Table G.1 — BS 7925-2:1998 to ISO/IEC/IEEE 29119-4 test design technique mapping

BS 7925-2:1998 |ISO/IEC/IEEE 29119-4
Test Design Techniques
3.1 Equivalence Partitioning 5.2.1 Equivalence Partitioning
3.2 Boundary Value Analysis 5.2.3 Boundary Value Analysis
3.3 State Transition Testing 5.2.8 State Transition Testing
3.4 Cause-Effect Graphing 5.2.7 Cause-Effect Graphing
3.5 Syntax Testing 5.2.4 Syntax Testing
3.6 Statement Testing 5.31 Statement Testing
3.7 Branch/Decision Testing 232 Branch Testing
5.3.3 Decision Testing
3.8 Data Flow Testing 537 Data Flow Testing
39 Branch Condition Testing 534 Branch Condition Testing
3.10 Branch Condition Combination Testing 5.3.5 Branch Condition Combination Testing
3.11 Modified Condition Decision Testing 5.3.6 I(VIN([)g]i)f(i:e)dTg;)tI}igion Decision Coverage
3.13 Random Testing 5.2.10 |Random Testing
Test Measurement Techniques
31 Equivalence Partition Coverage 6.2.2 Equivalence Partition Coverage
3.2 Boundary Value Analysis Coverage 6.2.3 Boundary Value Analysis Coverage
3.3 State Transition Coverage 6.2.8 State Transition Testing Coverage
3.4 Cause-Effect Coverage 6.2.7 Cause-Effect Graphing Coverage
3.5 Syntax Coverage 6.2.4 Syntax Testing Coverage
3.6 Statement Coverage 6.3.1 Statement Testing Coverage
6.3.2 Branch Testing Coverage
3.7 Branch and Decision Coverage
6.3.3 Decision Testing Coverage
3.8 Data Flow Coverage 6.3.7 Data Flow Testing Coverage
39 Branch Condition Coverage 6.3.4 Branch Condition Testing Coverage
3.10 Branch Condition Combination Coverage 6.3.5 aB;:nCh Condition Combination Testing Cover-
311 |Modified Condition Decision Coverage 6.3.6 ?O%iirf;egi Condition Decision (MCDC) Testing
3.13 Random Testing 6.2.10 |Random Testing Coverage
© ISO/IEC 2015 - All rights reserved 135

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Table G.1 (continued)

BS 7925-2:1998

|1S0/IEC/IEEE 29119-4

Guidelines for the Application of Test Design & Measurement Techniques

B.1 Equivalence Partitioning B.2.1 Equivalence Partitioning

B.2 Boundary Value Analysis B.2.3 Boundary Value Analysis

B.3 State Transition Testing B.2.8 State Transition Testing

B.4 Cause-Effect Graphing B.2.7 Cause-Effect Graphing

B.5 Syntax Testing B.2.4 Syntax Testing

B.6 Statement Testing C21 Statement Testing

B.7 Branch/Decision Testing C.2.2 Branch/Decision Testing

B.8 Data Flow Testing C2.4 Data Flow Testing

B9 Branch Condition Testing Branch Condition Testing, Branch Condition
B.10 Branch Condition Combination Testing C.2.3 Combination Testing and Modified Condition
B.11 Modified Condition Decision Testing Decision Coverage (MCDC) Testing

B.13 Random Testing B.2.10 |Random Testing

Test Technique Effectiveness

Annex C | Test Technique Effectiveness

|Annex F |Test Design Technique Coverage Effectiveness

136

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

© ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

ISO/IEC/IEEE 29119-4:2015(E)

Bibliography

[1] BATH G., & McKAy]. The Software Test Engineer’s Handbook. O’Reilly Media, Inc, 2008

[2] BEIZER B. Black Box Testing. Techniques for Functional Testing of Software and Systems. John
Wiley & Sons Inc, 1995

[3] Non-Functional Testing. British Computer Society Special Interest Group in Software
Testing, [viewed 7 September 2011]. Available from http://www.testingstandards.
co.uk/non_functional testing_techniques.htm

[4] BRITISH STANDARDS INSTITUTE. 1998. BS 7925-2:1998, Software testing - Software component
testing. Available from: http://shop.bsigroup.com/

[5] BURNSTEIN I. Practical Software Testing: A Process-Oriented Approach. Springer-Verlag, 2003

[6] COPELAND L. A Practitioner’s Guide to Software Test Design. Artech House, Inc, 2004

[7] CHo C.K. Quality Programming. Wiley, 1987

[8] CHow T.S. 1978. Testing Software Design Modelled by Finite-State Machines. In: IEEE
Transactions on Software Engineering, Vol. SE-4(3).

[9] CRAIG R., & JASKIEL S. Systematic Software Testing. Artech House Inc, 2002

[10] DesIkAN S., & RAMESH G. Software Testing: Principles and Practices. Pearson Education, 2007

[11] GRINDAL M., OFFUTT J., ANDLER S. 2005. Combination Testing Strategies: A Survey. In: Software
Testing, Verification and Reliability, John Wiley & Sons Ltd., 15, pp. 167-199.

[12] GROCHTMANN. M. and GRIMM, Grimm, K., 1993. Classification Trees for Partition Testing. In:
Software Testing, Verification & Reliability, Wiley, 3(2), pp. 63 - 82.

[13] JoNASSEN HAss A.M. Guide to Advanced Software Testing. Artech House, 2008

[14] INTERNATIONAL ORGANIZATION FOR STANDARDISATION/INTERNATIONAL
ELECTROTECHNICAL COMMITTEE. 2005. ISO/IEC TR 19759, Software Engineering -- Guide to
the Software Engineering Body of Knowledge (SWEBOK). Available from, http://www.iso.org/

[15] INTERNATIONAL ORGANIZATION FOR STANDARDISATION/INTERNATIONAL
ELECTROTECHNICAL COMMITTEE. 2011. ISO/IEC 25010, Systems and software engineering
- System and software product Quality Requirements and Evaluation (SQuaRE) - System and
software quality models. Available from: http://www.iso.org

[16] INTERNATIONAL ORGANIZATION FOR STANDARDISATION/INTERNATIONAL
ELECTROTECHNICAL COMMITTEE. 2007. ISO/IEC 25030, Software engineering - Software
product Quality Requirements and Evaluation (SQuaRE) - Quality requirements. Available from:
http://www.iso.org

[17] KANER C. Testing Computer Software. TAB Books Inc, 1998

[18] KERNIGHAN B.W., & RicHIE D.M. The C Programming Language. Prentice-Hall Software
Series, 1998

[19] KiT E. Software Testing in the Real World: Improving the Process. ACM Press, 1995

[20] MANDL R. Orthogonal Latin Squares: An Application of Experiment Design to Compiler Testing.
Commun. ACM. 1985, 28 (10) pp. 1054-1058

[21] MYERS G. The Art of Software Testing. John Wiley & Sons Inc, 1979

© ISO/IEC 2015 - All rights reserved 137

© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

http://www.testingstandards.co.uk/non_functional_testing_techniques.htm
http://www.testingstandards.co.uk/non_functional_testing_techniques.htm
http://shop.bsigroup.com/
http://www.iso.org/
http://www.iso.org
http://www.iso.org

ISO/IEC/IEEE 29119-4:2015(E)

[22] NursmmMuLu K. & PROBERT R.L. 1995. Cause-Effect Graphing Analysis and Validation of
Requirements. In Proceedings of CASCON’1995.

[23] RTCA/DO-178C, Software Considerations in Airborne Systems and Equipment Certification.
RTCA, Inc. 2011.

[24] REID S. 1996. Popular Misconceptions in Module Testing. In Proceedings of the Software Testing
Conference (STC), Washington DC.

138 © ISO/IEC 2015 - All rights reserved
© IEEE 2015 - All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015

Important Notices and Disclaimers Concerning IEEE Standards Documents

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents
IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process,
approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product.
Volunteers are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to
promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any
judgments contained in its standards.
IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory)
not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-
infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and
workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”
Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or
provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to
change brought about through developments in the state of the art and comments received from users of the standard.
In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE
undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own
independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the
appropriateness of a given IEEE standard.
IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.
Translations
The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version
published by IEEE should be considered the approved IEEE standard.
Official statements
A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official
position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational
courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather
than the formal position of IEEE.
Comments on standards
Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not
provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and
questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able
to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to
interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.
Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854 USA
Photocopies
Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or
organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service,
222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be
obtained through the Copyright Clearance Center.
Patents
Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no
position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement
of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of
Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable
terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.
Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a
license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised
that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained
from the IEEE Standards Association.
Participants: The list of IEEE participants can be accessed at the following URL: http://standards.ieee.org/downloads/29119/29119-4-2015/29119-4-2015_wg-
participants.pdf.
IMPORTANT NOTICE: IEEE Standards doc ts are not i ded to ensure safety, health, or environmental protection, or ensure against interference with or from

other devices or networks. Implementers of IEEE Standards doci ts are responsible for determining and iplying with all appropriate safety, security,
environmental, health, and interference protection practices and all applicable laws and regulations.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all
publications containing this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning

IEEE Documents.” They can also be obtained on request from IEEE or viewed at http.//standards.ieee.org/IPR/disclaimers.html.

© ISO/IEC 2015 — All rights reserved
© IEEE 2015 — All rights reserved 139

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/downloads/29119/29119-4-2015/29119-4-2015_wg-participants.pdf
http://standards.ieee.org/downloads/29119/29119-4-2015/29119-4-2015_wg-participants.pdf
http://standards.ieee.org/IPR/disclaimers.html

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 29119-4:2015(E)

Abstract:

This standard supports test case design and execution during any phase or
type of testing (e.g., unit, integration, system, acceptance, performance,
usability, reliability).

Keywords: 29119-4, life cycle, life cycle process, software, testing

ICS 35.080.00
ISBN 978-0-7381-9841-8 IEEE ISBN: 978-0-7381-9840-8
Price based on 139 pages STD20319

© ISO/IEC 2015 — All rights reserved
© IEEE 2015 — All rights reserved

Authorized licensed use limited to: UNIVERSIDADE DE BRASILIA. Downloaded on April 16,2017 at 20:51:01 UTC from IEEE Xplore. Restrictions apply.

	ISO/IEC/IEEE 29119-5-2015 Title Page
	Contents
	Foreword
	Introduction
	1	Scope
	2	Conformance
	2.1	Intended Usage
	2.2	Full Conformance
	2.3	Tailored Conformance

	3	Normative References
	4	Terms and Definitions
	5	Test Design Techniques
	5.1	Overview
	5.2	Specification-Based Test Design Techniques
	5.2.1	Equivalence Partitioning
	5.2.2	Classification Tree Method
	5.2.3	Boundary Value Analysis
	5.2.4	Syntax Testing
	5.2.5	Combinatorial Test Design Techniques
	5.2.6	Decision Table Testing
	5.2.7	Cause-Effect Graphing
	5.2.8	State Transition Testing
	5.2.9	Scenario Testing
	5.2.10	Random Testing

	5.3	Structure-Based Test Design Techniques
	5.3.1	Statement Testing
	5.3.2	Branch Testing
	5.3.3	Decision Testing
	5.3.4	Branch Condition Testing
	5.3.5	Branch Condition Combination Testing
	5.3.6	Modified Condition Decision Coverage (MCDC) Testing
	5.3.7	Data Flow Testing

	5.4	Experience-Based Test Design Techniques
	5.4.1	Error Guessing

	6	Test Coverage Measurement
	6.1	Overview
	6.2	Test Measurement for Specification-Based Test Design Techniques
	6.2.1	Equivalence Partition Coverage
	6.2.2	Classification Tree Method Coverage
	6.2.3	Boundary Value Analysis Coverage
	6.2.4	Syntax Testing Coverage
	6.2.5	Combinatorial Test Design Technique Coverage
	6.2.6	Decision Table Testing Coverage
	6.2.7	Cause-Effect Graphing Coverage
	6.2.8	State Transition Testing Coverage
	6.2.9	Scenario Testing Coverage
	6.2.10	Random Testing Coverage

	6.3	Test Measurement for Structure-Based Test Design Techniques
	6.3.1	Statement Testing Coverage
	6.3.2	Branch Testing Coverage
	6.3.3	Decision Testing Coverage
	6.3.4	Branch Condition Testing Coverage
	6.3.5	Branch Condition Combination Testing Coverage
	6.3.6	Modified Condition Decision (MCDC) Testing Coverage
	6.3.7	Data Flow Testing Coverage

	6.4	Test Measurement for Experience-Based Testing Design Techniques
	6.4.1	Error Guessing Coverage

	Annex A (informative) Testing Quality Characteristics
	Annex B (informative) Guidelines and Examples for the Application of Specification-Based Test Design Techniques
	Annex C (informative) Guidelines and Examples for the Application of Structure-Based Test Design Techniques
	Annex D (informative) Guidelines and Examples for the Application of Experience-Based Test Design Techniques
	Annex E (informative) Guidelines and Examples for the Application of Interchangeable Test Design Techniques
	Annex F (informative) Test Design Technique Coverage Effectiveness
	Annex G (informative) ISO/IEC/IEEE 29119‑4 and BS 7925-2 Test Design Technique Alignment
	Bibliography

