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Abstract—Model-based testing (MBT) provides a systematic 

and automated way to facilitate rigorous testing of software 
systems. MBT has been an intense area of research and a large 
number of MBT techniques have been developed in the literature 
and in the practice. However, all of the techniques have been 
developed using their own concepts and terminology of MBT, 
which are very often different than other techniques and at times 
have conflicting semantics. Moreover, while working on MBT 
projects with our industrial partners in the last several years, we 
were unable to find a unified way of defining MBT techniques 
based on standard terminology. To precisely define MBT 
concepts with the aim of providing common understanding of 
MBT terminology across techniques, we formalize a small subset 
of the recently released ISO/IEC/IEEE 29119 Software Testing 
Standard as a conceptual model (UML class diagrams) together 
with OCL constraints. The conceptual model captures all the 
necessary concepts based on the standard terminology that are 
mandatory or optional in the context of MBT techniques and can 
be used to define new MBT tools and techniques. To validate the 
conceptual model, we instantiated its concepts for various MBT 
techniques previously developed in the context of our industrial 
partners. Such instantiation automatically enforces the specified 
OCL constraints. This type of validation provided us feedback to 
further refine the conceptual model. Finally, we also provide our 
experiences and lessons learnt for such formalization and 
validation. 

Index Terms—Model-Based Testing, ISO/IEC/IEEE 29119, 
UML, Test Case Generation, Modeling Methodology. 

I. INTRODUCTION 
Model-based testing (MBT) [1-3] provides a systematic way of 
testing software systems in a cost-effective manner by utilizing 
models as backbone models to facilitate various testing 
activities including test strategy definition, test data generation, 
and automated oracle. MBT, more specifically test case 
generation from models in the context of this paper, has gained 
attention in both industry and academia based on a variety of 
models (e.g., UML and SysML [4]) for various types of testing 
such as functional testing and extra-functional testing (e.g., 
robustness) and a large number of MBT techniques and tools 
have been developed [2, 3, 5-12].  

We have been working on several MBT projects at Certus  
Software Verification and Validation Center (http://certus-
sfi.no/) with industrial partners including Cisco Systems, ABB 
Robotics, Tomra AS, and Western Geco since 2007. While 
defining MBT techniques for our industrial partners, we were 
unable to find standardized concepts and terminology to do so. 

The only standardization efforts for MBT we could find were 
UML Testing Profile (UTP) Version 1 from Object 
Management Group (OMG) [13] and  ETSI’s ES 202 951 
standard (released 2011), which were not sufficient enough to 
support MBT in our industrial partners. Even thorough 
investigation of MBT techniques in both academic literature 
and practice revealed that most of the techniques use their own 
concepts and terminology that usually differ from the concepts 
and terminology in other techniques and sometimes have 
conflicting semantics. As a result, we have to define our own 
concepts and terminology to define MBT techniques for our 
industrial contexts. 

With the advent of the ISO/IEC/IEEE 29119 Software 
Testing Standard [14] in September 2013, we decided to 
formalize it as a conceptual model consisting of testing 
concepts, their relationships, and constraints. The conceptual 
model covers all the concepts required for defining an MBT 
technique. The conceptual model is implemented as a UML 
Class diagram with constraints specified in the Object 
Constraint Language (OCL) using the IBM Rational Software 
Architect tool, which facilitates automated validation of 
constraints on the instances of the models (Object diagrams in 
our case). Notice that in this paper, we formalized only a small 
subset of the standard related to the test case design and more 
comprehensive formalization of the standard is our future 
work.  

The formalization of the conceptual model offers several 
benefits including: 1) It provides a unified meaning of MBT 
concepts based on the standard terminology to researchers and 
practitioners, 2) Such formalization may be used as a reference 
model to develop MBT tools in the future, 3) The conceptual 
model serve as a starting point to define a new MBT technique, 
4) The conceptual model with the tool support can be used to 
automatically determine conformance of an MBT technique in 
terms of all the mandatory concepts to the standard,  5) As a 
reference model, the conceptual model may facilitate 
communication among different standardization bodies (e.g., 
ETSI and OMG) that can potentially initiate a joint effort for 
the standardization of MBT. 

To validate the conceptual model, we instantiated the 
concepts in the conceptual model for our existing MBT 
techniques. Such instantiation provided us feedback on the 
conceptual model, which was further used to refine the 
conceptual model. Finally, we also report our experiences and 
lessons learnt from the development and validation of the 
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conceptual model. The rest of the paper is organized as 
follows: We present the conceptual model of the standard in 
Section II followed by the methodology to use the conceptual 
model in Section III. Section IV presents the mapping of 
various MBT techniques to the concepts in the conceptual 
model and we present results and discussion based on the 
mapping in Section III. Section VI presents the related work, 
whereas we conclude the paper in Section VII. 

II. CONCEPTUAL MODEL OF THE ISO/IEC/IEEE 29119 
SOFTWARE TESTING STANDARD 

In this section, we provide the conceptual model that we 
developed based on the standard. Notice that for the sake of 
clarity we provide different views of the model based on the 
concepts and in the implementation all the concepts are linked. 
The conceptual model was implemented as a set of UML class 
diagrams together with OCL constraints in the IBM’s Rational 

Software Architecture (RSA) tool. In this paper, we provide a 
few OCL constraints as examples. The RSA tool allows 
automated validation of OCL constraints when the conceptual 
model is instantiated as object diagrams. TABLE I shows the 
list of defintions of various concepts from the standard. Notice 
that these definitions are taken as it is from the standard. To 
avoid cluttering, we didn’t provide each definition within 
double quotes. 

A. Test Case and Test Set 
The first and foremost concept in testing is Test Case whose 
definition is shown in Concept 1 in TABLE I and is modeled 
as an abstract concept Test Case in Fig. 1. Since the ISO 
standard is defined for software testing in general, we 
specialized the concept into two concepts to support MBT: 
Abstract Test Case and Concrete Test Case as shown in Fig. 2 
and Fig. 3 respectively.  

TABLE I RELEVANT DEFINITION FROM ISO/IEC/IEEE 29119 SOFTWARE TESTING STANDARD  [14] 

# Concept Definition 

1 Test Case 

Set of test case preconditions, inputs (including actions, where applicable), and 
expected results, developed to drive the execution of a test item to meet test 
objectives, including correct implementation, error identification, checking 
quality, and other valued information 

2 Test Set Set of one or more test cases with a common constraint on their execution 

3 
Test Design 
Technique (Test 
Model) 

Activities, concepts, processes, and patterns used to construct a test model that is 
used to identify test conditions for a test item, derive corresponding test coverage 
items, and subsequently derive or select test cases 

4 Test Case 
Specification Documentation of a set of one or more test cases 

5 Test Basis Body of knowledge used as the basis for the design of tests and test cases 

6 Test Procedure 
Sequence of test cases in execution order, and any associated actions that may be 
required to set up the initial preconditions and any wrap up activities post 
execution 

7 Test Procedure 
Specification 

Specification document specifying one or more test procedures, which are 
collections of test cases to be executed for a particular objective 

8 Test Data 
Data created or selected to satisfy the input requirements for executing one or 
more test cases, which may be defined in the Test Plan, test case or test 
procedure 

9 Test Item Work product that is an object of testing 

10 Test Plan 
Detailed description of test objectives to be achieved and the means and schedule 
for achieving them, organized to coordinate testing activities for some test item 
or set of test items 

11 Feature Set Collection of items which contain the test conditions of the test item to be tested 
which can be collected from risks, requirements, functions, models, etc. 

12 
Test 
Condition/Test 
Requirement 

Testable aspect of a component or system, such as a function, transaction, 
feature, quality attribute, or structural element identified as a basis for testing 

13 Test Strategy Part of the Test Plan that describes the approach to testing for a specific test 
project or test sub-process or sub-processes 

14 Test Coverage Degree, expressed as a percentage, to which specified test coverage items have 
been exercised by a test case or test cases 

15 Test Coverage 
Item 

Attribute or combination of attributes that is derived from one or more test 
conditions by using a test design technique that enables the measurement of the 
thoroughness of the test execution 

16 Test Result 
Indication of whether or not a specific test case has passed or failed, i.e. if the 
actual result observed as test item output corresponds to the expected result or if 
deviations were observed 

17 Actual Result Set of behaviours or conditions of a test item, or set of conditions of associated 
data or the test environment, observed as a result of test execution 

18 Expected Result Observable predicted behaviour of the test item under specified conditions based 
on its specification or another source 

19 Pass or Fail 
Criteria 

Decision rules used to determine whether a test item, or feature of a test item, has 
passed or failed after testing 
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Fig. 1.  Conceptual model for Abstract/Concrete Test Case and Test Set 

One abstract test case can be instantiated into one or more 
concrete test cases based on test data. An Abstract Test Set is a 
set of one or more abstract test cases, whereas a Concrete Test 
Set consists of more than one concrete test case. Depending on 
how many times one abstract test case is instantiated, the size 
of concrete test set can be more than the size of abstract test 
set. This rule is represented as an OCL constraint below: 
context AbstractTestCase inv: 
self.concretetestcase->size() >1 implies 
self.abstracttestset-
>collect(abstracttestset.abstracttestcase-
>size())->forAll(atsize:Integer| 
self.concretetestcase-
>collect(concretetestcase.concretetestset.concr
etetestcase->size())-
>forAll(ctsize:Integer|ctsize>atsize)) 

On the other hand, if each abstract test case is instantiated 
exactly once, the size of abstract test set and concrete test set 
must be equal. This rule is represented as an OCL constraint 
below: 
AbstractTestCase.allInstances()-
>forAll(atc:AbstractTestCase|atc.concretetestca
se->size()=1) implies 
AbstractTestSet.allInstances()-
>collect(ats:AbstractTestSet|ats.abstracttestca
se->size())->forAll(atsize:Integer| 
ConcreteTestSet.allInstances()-
>collect(cts:ConcreteTestSet|cts.concretetestca
se->size())-
>forAll(ctsize:Integer|ctsize=atsize))    

An Abstract Test Case (Fig. 2) comprises of three items: 1) 
At least one Input/Stimulus to Test Item (Concept 9 in TABLE 
I, commonly known as System Under Test in software testing 
literature [15]). Example of the stimulus to a test item include 
access to test item via application programming interface 
(API): 2) A set of Test Data Specification related to 
Input/Stimulus (e.g., specification of ranges of values of input 
parameters). For example, a set of valid values of all 
parameters of an API: 3) Specification of Expected Result 
(Concept 18 in Table 1). For example, values of state variables 
of test item representing a correct state. 

A Concrete Test Case (Fig. 3) is similar to Abstract Test 
Case; however the only difference is that Test Data 
Specification has been realized into concrete values called as 
Test Data (Concept 8, Fig. 4). In other words, the exact values 
for the parameters of stimulus or other parameters of a test case 
(e.g., configuration parameters) have been selected by applying 
any test data generation strategy, such as equivalence 
partitioning and boundary value analysis [15, 16]. Each 

concrete test case has unique set of test data. This rule is 
formalized as an OCL constraint below: 
context ConcreteTestCase inv:  
self.stimuli->isUnique(stimuli.testdata) or  
self->isUnique(testdata) 

 
Fig. 2.  Conceptual model for Abstract Test Case 

 
Fig. 3.  Conceptual model for Concrete Test Case 

A Test Set (Concept 2) is specialized into two types: 
Abstract Test Set that contains Abstract Test Cases, whereas 
Concrete Test Set contains Concrete Test Cases. The difference 
between the Abstract Test Set and Concrete Test Set is the 
same as Abstract Test Case and Concrete Test Case, i.e., a 
Concrete Test Case has exact data values and Concrete Test 
Set is composed of such concrete test cases. 

 
Fig. 4.  Conceptual model for Test Data 

Notice that an MBT technique doesn’t necessarily need to 
have these two levels and only Concrete Test Case and 
Concrete Test Set are mandatory. An OCL constraint 
implementing such rule is shown below: 
AbstractTestCase.allInstances()->size() = 0 
implies AbstractTestSet.allInstances()->size() 
= 0   

B. Test Model 
The Test Model concept (Concept 3) is modeled in Fig. 5 
showing its relationships to other testing concepts and is the 
model used to derive abstract/concrete test cases. An example 
of Test Model in UML is a UML State Machine, from which a 
set of abstract/concrete test cases (e.g., a sequence of states and 
transitions) can be derived. A Test Model is developed using a 
Test Design Technique (Concept 3) based on Test Case 
Specification (Concept 4) that documents one or more test 
cases usually in textual format. Test Case Specification is 
usually a subset of Test Basis (Concept 5), which is a “Body of 
knowledge used as the basis for the design of test cases” [14]. 
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Test basis is the first set of documents that are used for 
deriving test case specifications followed by developing a test 
model. Examples of test basis include a set of requirements 
specifications and all other information about a test item 
independent of testing considerations. In contrast, test case 
specifications are documents containing all the testing 
requirements for a test item. To define an MBT technique, it is 
not always necessary to have documents available for test basis 
and test case specifications, as we realized while working with 
our industrial partners and most of the test case specifications 
were rather available as tacit knowledge from test engineers 
and test managers. 

C. Test Procedure 
Test Procedure (Concept 6) is defined by ISO as: “Sequence of 
test cases in execution order, and any associated actions that 
may be required to set up the initial pre-conditions and any 
wrap up activities post execution” [14] and its relationships to 
other related concepts are shown in Fig. 6. As for Test Case, 
we specialized Test Procedure into Abstract Test Procedure 
and Concrete Test Procedure and the only difference between 
the both is that Abstract Test Procedure contains Test Data 
Specification, whereas Concrete Test Procedure contains Test 
Data. A MBT technique doesn’t necessarily need to have 

separation between abstract and concrete test procedure, as is 
the case with test case and test set. Moreover, a test procedure 
may not even exist in a particular context and the 
corresponding OCL constraint is shown below: 
TestProcedure.allInstances()->size()>=0 

D. Test Plan 
Test Plan (Concept 10) defines the Test Objectives and Testing 
Activities to achieve them. The most important part of Test 
Plan is Test Strategy (Concept 13) in the context of MBT that 
actually describes the approach for testing Test Item (Concept 
9) based on Test Objective (e.g., functional testing or extra-
functional testing) as shown in Fig. 6. Examples of testing 
activities include test generation, test minimization, and test 
scheduling. In the context of the current paper, we are only 
focusing on test generation as a testing activity. 

A Test Item (Fig. 6) has a set of related test conditions or 
test requirements (Test Condition/Test Requirement Concept 
number 12) that describe the testable aspects of the Test Item, 
for example, a function, transaction, or a feature that are related 
to Feature Set (Concept 11, for example, features, 
requirements, and functions) of the Test Item.   

 
Fig. 5.  Conceptual model for Test Model 

 
Fig. 6.  Conceptual model for Test Procedure 

 
Fig. 7.  Conceptual model for Test Plan 
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E. Test Coverage 
Test Coverage (Concept 14) is calculated when a test driver 
(Test Driver) executes a set of concrete test cases on Test Item 
and as a result, a set of coverage items (Coverage Item/Test 
Coverage Item concept 15) defined by test conditions (Test 
Conditions) are covered as shown in Fig. 7. Typical examples 
of test coverage of test item include code coverage, for 
example, statement coverage and branch coverage. 

Notice that Test Coverage in the standard specifically refers 
to the coverage of coverage items on Test Item and the standard 
doesn’t define an explicit concept for the coverage of Test 
Model. However, the coverage of Test Model is implicitly 
covered in the Test Strategy inside Test Plan. For example, 
considering example of a UML state machine as a test model, 
typical test coverage includes All State Coverage and All 
Transition Coverage. 

F. Test Result 
A test driver executes a concrete test case on a test item and 
uses Test Result to compare expected result specified in the test 
case with the actual result obtained from the test item using a 
Pass/Fail Criteria (Concept 19) to determine if the test case is 
passed or failed (Fig. 8 and Fig. 9). In practice, in addition to 
pass or fail, the result of a test case can also be inconclusive or 
may also be an error. However, these concepts are not 
represented in the standard. 

III. METHODOLOGY 
In this section, first we provide two key activities in automated 
MBT. First, in Section III.A, we discuss about how to transit 
from test basis to the derivation of one or more test models. In 
Section III.B, we discuss two key types of test generators to 
support generation of executable test cases. Finally in Section 
III.C, we provide the two-step procedure that we used to 
validate the conceptual model. 

A. Designing a Test Model 
Fig. 10 shows an activity diagram for defining a test model that 
is used as a key component for deriving test cases and test 
procedures. The activity diagram is divided into three 
activities, where the first activity is related to identifying the 
test basis that determines body of knowledge available to 
derive test case specification, test procedure specification, and 
test requirements of test item shown as three parallel activities 
in Fig. 10. Notice that in a certain application context, the test 
basis, test case specifications, and test procedure specifications 
may not be explicitly available in the form of documents and 
may be available as domain knowledge from the domain 
experts. The third activity involves defining test models and 
there are several possibilities for defining test models: 1) One 
may need to create one test model for test case specification 
and one test model for test procedure specification: 2) A test 
model only for test case specification and there is no test 
procedure specification available: 3) More than one test models 
for test case specification and test procedure specification.  

One way of MBT using UML State machines involves two 
test models: 1) A class diagram capturing state variables and 
stimulus as operations/signals representing the static structure 
of test item: 2) A state machine modeling the behavior of test 
item. 

 

 
Fig. 8.  Conceptual model for Test Coverage 

 

 

 

 
Fig. 9.  Conceptual model for Test Result 
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Fig. 10.  An activity diagram for deriving test models 

B. Generation of Test Cases and/or Test Procedures 
In this section, we discuss the activities for transforming test 
models into test cases and test procedures as shown in Fig. 11. 
As a first step, an Abstract Test Generator uses test models as 
input and generates Abstract Test Set applying one or more test 
strategy, e.g., covering certain structural features of a the test 
model (Fig. 11). In the second step, the abstract test set is 
transformed into concrete test set using Concrete Test 
Generator. Notice that these two levels of test generator are 
dependent on the application context and only a test generator 
that generates concrete test cases is mandatory. The choice of 
having an abstract test generator facilitates moving some of the 
complexity of platform specific test generator into concrete test 
generator. Such a separation allows defining various platform 
specific concrete test generators that permits generating 
executable test cases in various test scripting languages such as 
Java and Python. Moreover, an abstract test generator separates 
the details of test strategies from the concrete test generator, 
e.g., coverage criteria and facilitates incorporation of new test 
strategies in abstract test generator without affecting the 
implementation of concrete test generator. In case of having 
only concrete test generator, all the complexity of test 
strategies and platform specific details are inside the generator 
and maintenance requires much more effort than using the two 
types of generators. 

C. Validation Procedure 
The conceptual model was validated in two phases. During the 
first phase, the conceptual model was developed incrementally 
based on the standard’s documents. The authors validated the 
conceptual model using the inspection methods. In the second 
phase, the conceptual model was validated by instantiating its 
concepts based on the MBT techniques from our existing 
industrial applications. The two techniques were based on 
UML and its extensions, whereas the third one was based on a 
domain specific language. Based on these instantiations, we 
obtained the final version of the conceptual model, which is 
presented in the paper. Typical problems that we encountered 
and eventually addressed during the revisions of conceptual 

model were mostly related to incorrect cardinalities on 
associations between two concepts and incorrect associations. 

IV.  MAPPING TO MBT TECHNIQUES 
In this section, we present mapping of various concepts from 
the standard to various MBT techniques that we developed 
with our industrial partners in the last several years. In Section 
IV.A, we present the mapping of the concepts of various MBT 
techniques based on UML state machines that we applied to 
several industrial case studies and Section IV.B presents the 
mapping to a test case specification language that we 
developed in the context of one industrial partner by defining a 
domain specific language to support automated testing. 

A. UML State Machine-Based Testing 
In this section, we will discuss MBT using UML state 
machines for supporting functional testing and robustness 
testing. 

1) Functional Testing : While performing functional 
testing using UML state machines, we worked with the 
following four case studies. 

Video Conferencing System (VCS). The first case study is 
about black-box system-level testing of the Videoconferencing 
Systems (VSCs) developed by Cisco Systems, Norway by 
means of systematic test automation [17]. We targeted one 
particular VCS called C90 and we modeled all the 20 
subsystems using UML state machines and UML class 
diagrams. 

Safety Monitoring Component (SMC). The second case 
study is about MBT of Safety Monitoring Component (SMC) 
developed by ABB robotics. SMC exhibits state-based 
behavior and we used UML state machines to test SCM. The 
implementation of SMC is in C++ [6]. 

  

 

 

 
Fig. 11.  Activity diagram for test generators 
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TABLE II MAPPING OF CONCEPTS FROM VARIOUS MBT TECHNIQUES TO THE CONCEPTS IN THE STANDARD 

# Concept State Machine (SM) Aspect State Machine 
(ASM) RTCM 

1 Abstract Test 
Case 

Sequence of (State-
>Transition->State) Same as SM Sequence of 

statements 

2 Abstract Test Set A set of abstract test cases Same as SM A set of test case 
specification 

3 Concrete Test 
Case 

A sequence of statements 
setting configuration 
parameters, checking state 
variables, calling APIs with 
data 
(In Python, Java) 

Same as SM Same as SM 

4 Concrete Test Set A set of concrete test cases Same as SM Same as SM 

5 Stimulus Trigger of type Call/Signal 
Event Change Event API 

6 
Test Design 
Technique (Test 
Model) 

UML State Machine and 
Class diagrams are test 
models 

Aspect State Machine 
(ASM), Aspect Class 
Diagram, UML Class 
diagrams and state machines 

Test Case 
Specification in 
RTCM 

7 Test Case 
Specification 

Specifications about VCSs, 
Safety Monitoring 
Component, Bottle 
Recycling System, control 
system for marine seismic 
acquisition 

Specifications about VCSs Specifications about 
VCSs 

8 Test Basis Specification, Requirements 
Documents, User Manuals Same as SM Same as SM 

9 Test Procedure - - - 

10 Test Procedure 
Specification - - - 

11 Test Data 

Parameters of APIs of VCS 
modeled on Triggers as 
Signal, Call Event, Time 
Event 

Values of states of Test Item 
and environment Parameters of API 

12 Test Data 
Specification Guards, Time Event Change Event Branches in test 

case specifications 

13 Test Item 

VCS, Safety Monitoring 
Component, Bottling 
Recycling System, Control 
System of marine seismic 
acquisition 

VCS VCS 

14 Test Plan - - - 
15 Feature Set Features of Test Items  VCS Features VCS Features 

16 
Test 
Condition/Test 
Requirement 

Covering each feature of 
test item Covering each VCS feature Covering each VCS 

feature 

17 Test Strategy - - - 

18 
Test 
Coverage/Test 
Model Coverage 

API Coverage, State 
Coverage, Configuration 
Coverage 

Robustness Properties 
coverage Same as SM 

19 Test Coverage 
Item  API, Status, Configuration  Property Same as SM 

20 Test Result - - - 
21 Actual Result State values State values State values 

22 Expected Result 
Specification 

OCL Constraints as State 
Invariants Same as SM 

Conditions written 
in restricted natural 
language 

23 Pass or Fail 
Criteria 

Evaluation of OCL 
Constraints Same as SM String matching 

 
Control System for Marine Seismic Acquisition. The third 

case study is from WesternGeco, who is a market leader in the 
field of seismic systems. The case study [10] is about a large 
and complex control system for marine seismic acquisition. 
The system controls tens of thousands of sensors and actuators 
in its environment. The timing deadlines on the environment 

are in the order of hundreds of milliseconds. The system was 
developed using the Java language.  

Bottle Recycling Machine. The fourth case study is an 
automated bottle-recycling machine developed by Tomra AS 
[10]. The system under test (SUT) was an embedded device 
‘Sorter’, which was responsible to sort the bottles into their 
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appropriate destinations. The system communicated with a 
number of components to guide re-cycled items through the 
recycling machine to their appropriate destinations. It is 
possible to cascade multiple sorters with one another, which 
results in a complex recycling machine. The SUT was 
developed using the C language. 

Summary of Results. For the first two case studies, we 
implemented UML state machines based testing techniques in 
a tool called Transformation-based Tool for UML-based 
Testing (TRUST) [6], for the rest of the two case studies 
separate tools were developed. The third column in TABLE II 
provides results for MBT solutions for these four case studies. 
For all these case studies, our tools transform test models into 
abstract test cases and then the abstract test cases were 
transformed into executable test cases. 

2) Robustness Testing: This case study is an extension of 
case study 1 and is about supporting automated, model-based 
robustness testing of the C90 VCS. The VCS should be robust 
enough to handle the possible abnormal situations that can 
occur in its operating environment and invalid inputs. For 
example, C90 should be robust against hostile environment 
conditions (regarding the network and other communicating 
VCSs), such as high percentage of packet loss and high 
percentage of corrupt packets. Such behavior is very important 
for a commercial VCS and must be tested systematically and 
automatically to be scalable. More details on the robustness 
behavior of C90 and its functional modeling can be found in 
[17]. An extended version of the TRUST tool was used for 
MBT in this case. The results for this case are provided in the 
fourth column. The TRUST worked in two stages: a) In the 
first stage, it trans-forms test models, i.e., UML class diagrams 
and state machines and Aspect class diagram and Aspect state 
machines into abstract test cases: b) In the second stage, the 
abstract test cases were converted into concrete test cases. 

B. RTCM 
In this section, first we provide a brief overview of our test 
case specification language followed by summary of key 
results. 

1) Approach: Restricted Test Case Modeling (RTCM) 
[18] is a test case specification language, which is an 
extension of a language called Restricted Use Case Modeling 
(RUCM) [19]. The specialty of RTCM lies in providing a 
precise way of specifying natural language test case 
specifications with restriction rules, easy to use template, and 
a set of keywords. All the features of RTCM are captured 
formally in TCMeta extending UCMeta that is a metamodel 
behind RUCM. The tool support with RTCM (aToucan4Test) 
supports automated generation of executable test cases from 
RTCM specifications. 

2) Summary of Results: We used the case study 1 (Section 
IV.A) with RTCM. More details of modeling the case study 
can be found in [18]. The fifth column in TABLE II shows the 
results related to RTCM. In case of this approach, test 

generator, i.e., aToucan4Test doesn’t generate abstract test 
case and transformation is directly to executable test cases. 

V. OVERALL RESULTS, EXPERIENCE AND LESSONS 
LEARNT 

In this section, we provide discussion on our experience of 
mapping the concepts of standard to our MBT techniques. 

A. Unified Meaning of MBT Concepts 
The results presented in TABLE II show the mapping of the 
concepts from MBT techniques based on UML state machines, 
Aspect state machines (extension of UML state machines), and 
RTCM (a domain specific language) [18]. As discussed in 
Section IV, such mapping was performed by instantiating the 
concepts of conceptual model in the IBM RSA tool. We 
noticed that even though the MBT techniques are different, the 
concepts can still be mapped to the standard software testing 
concepts in the standard even though the standard is still 
exclusively lacking model-based test design.  

B. Tailoring of the Standard 
Based on our experience of working with the standard, we feel 
that the standard is defined at a very high level of abstraction. 
Such level of abstraction, on the one hand introduces 
ambiguity in understanding the concepts, whereas on the other 
hand, is applicable to different types of testing techniques such 
as model-based testing and code-based testing. To deal with 
the ambiguity, we developed the conceptual model, whereas 
with respect to its applicability to different types of testing 
techniques, we demonstrated its application to three types of 
testing techniques, i.e., based on standard UML state machines, 
aspect state machines (extensions of UML), and RTCM—a 
domain specific testing language.  

C. Guidelines to Develop New MBT Technique 
The proposed conceptual model can be used as a starting point 
for the development of new MBT techniques. The designer of 
an MBT technique needs to consider at least all the mandatory 
concepts to support automated testing and ensure that all the 
constraints on the conceptual model are validated to be true. 
Notice that our conceptual model is generic and independent 
of any modelling language. This means that it can be used to 
define either totally new language for MBT or as extensions of 
existing languages. We demonstrated this by mapping three 
types of MBT techniques to the conceptual model in the 
paper. 

D. Conformance of an MBT Technique to the Standard 
The implementation of the conceptual model as a metamodel 
together with the OCL constraints can help to assess how 
much an existing MBT technique or tool conforms to the 
standard. This can particularly help industry to select the tools 
and methodologies that conform to the standard since it is 
well-known fact that standard-based tools and techniques are 
preferred in the industry.  
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E. Enabling Communication Among Different 
Standardization Bodies 

The conceptual model may serve as a reference model and 
may be used to enable common understanding and unified 
communication among other standardization bodies focusing 
on MBT such as ETSI and Object Management Group. This 
can further initiate discussion among these standardization 
bodies to start a joint effort on the standardization of MBT 
techniques. 

VI. RELATED WORK 
There are a few efforts in standardization of model-based 
testing that currently exists. One well-known effort in this 
regard is UML Test Profile Version 1 [13] from Object 
Management Group (OMG). The profile provides lightweight 
extension to UML for various testing activities such as test 
design, specification, and visualization. The main purpose of 
the profile was to keep it general enough such that it can be 
used in various domains. The profile focused on modelling the 
interactions of SUT with its environment and test execution 
system. Another recent standard on model-based testing is the 
ETSI ES 202 951 standard published in 2011 with participation 
from various MBT tool vendors, users, and research institutes. 
The standard defines a language called Test Description 
Language (TDL) that supports modelling test description, test 
configuration, and test data. There are several software testing 
standards in the literature such as IEEE 829-2008 Standard for 
Software and System Test Documentation [20] and the recent 
ISO/IEC/IEEE 29119 Standard [14] that combines efforts from 
IEEE/ISO, and IEC. The work presented in this paper is a first 
attempt towards this direction, which formalizes the testing 
concepts of the ISO/IEC/IEEE 29119 standard to enable 
model-based test design. One of the aims of such formalization 
is to provide a common ground among the different 
standardization bodies such as ETSI and OMG to develop joint 
MBT standards in the future. 

VII. CONCLUSION 
Model-based Testing (MBT) has proven to provide a 
systematic and automated way of testing complex systems and 
has been area of much focus in industry and academic in the 
last decade. A large number of MBT techniques and tools have 
emerged targeting various types of testing. Most of the 
techniques, however, lack a unified understanding of concepts 
of MBT and as result decreases the interoperability among the 
techniques and tools. 

To provide a unified understanding of MBT concepts based 
on the standard testing terminology and relationship among the 
concepts, we formalizes the concepts from the recent software 
testing standard: the ISO/IEC/IEEE 29119 Standard as a 
conceptual model implemented as UML class diagram. A set 
of constraints in OCL is also defined to automatically enforce 
various constraints on the conceptual model. The conceptual 
model serves as a reference model that can be used as a starting 
point for developing new MBT techniques. The current version 
of the conceptual model formalizes only a small subset of the 
standard related to test case design. 

To assess validate the conceptual model, we mapped the 
concepts of various MBT techniques we developed over the 
last several years with several industrial partner’s to the 
conceptual model. Based on such validations, an improved 
version of the conceptual model is presented in the paper. In 
the future, we plan to extend our conceptual model to more 
comprehensively formalize the standard.  
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