
Formalizing the ISO/IEC/IEEE 29119 Software
Testing Standard

Shaukat Ali
Simula Research Laboratory

Oslo, Norway
shaukat@simula.no

Tao Yue
Simula Research Laboratory, University of Oslo

Oslo, Norway
tao@simula.no

Abstract—Model-based testing (MBT) provides a systematic

and automated way to facilitate rigorous testing of software
systems. MBT has been an intense area of research and a large
number of MBT techniques have been developed in the literature
and in the practice. However, all of the techniques have been
developed using their own concepts and terminology of MBT,
which are very often different than other techniques and at times
have conflicting semantics. Moreover, while working on MBT
projects with our industrial partners in the last several years, we
were unable to find a unified way of defining MBT techniques
based on standard terminology. To precisely define MBT
concepts with the aim of providing common understanding of
MBT terminology across techniques, we formalize a small subset
of the recently released ISO/IEC/IEEE 29119 Software Testing
Standard as a conceptual model (UML class diagrams) together
with OCL constraints. The conceptual model captures all the
necessary concepts based on the standard terminology that are
mandatory or optional in the context of MBT techniques and can
be used to define new MBT tools and techniques. To validate the
conceptual model, we instantiated its concepts for various MBT
techniques previously developed in the context of our industrial
partners. Such instantiation automatically enforces the specified
OCL constraints. This type of validation provided us feedback to
further refine the conceptual model. Finally, we also provide our
experiences and lessons learnt for such formalization and
validation.

Index Terms—Model-Based Testing, ISO/IEC/IEEE 29119,
UML, Test Case Generation, Modeling Methodology.

I. INTRODUCTION
Model-based testing (MBT) [1-3] provides a systematic way of
testing software systems in a cost-effective manner by utilizing
models as backbone models to facilitate various testing
activities including test strategy definition, test data generation,
and automated oracle. MBT, more specifically test case
generation from models in the context of this paper, has gained
attention in both industry and academia based on a variety of
models (e.g., UML and SysML [4]) for various types of testing
such as functional testing and extra-functional testing (e.g.,
robustness) and a large number of MBT techniques and tools
have been developed [2, 3, 5-12].

We have been working on several MBT projects at Certus
Software Verification and Validation Center (http://certus-
sfi.no/) with industrial partners including Cisco Systems, ABB
Robotics, Tomra AS, and Western Geco since 2007. While
defining MBT techniques for our industrial partners, we were
unable to find standardized concepts and terminology to do so.

The only standardization efforts for MBT we could find were
UML Testing Profile (UTP) Version 1 from Object
Management Group (OMG) [13] and ETSI’s ES 202 951
standard (released 2011), which were not sufficient enough to
support MBT in our industrial partners. Even thorough
investigation of MBT techniques in both academic literature
and practice revealed that most of the techniques use their own
concepts and terminology that usually differ from the concepts
and terminology in other techniques and sometimes have
conflicting semantics. As a result, we have to define our own
concepts and terminology to define MBT techniques for our
industrial contexts.

With the advent of the ISO/IEC/IEEE 29119 Software
Testing Standard [14] in September 2013, we decided to
formalize it as a conceptual model consisting of testing
concepts, their relationships, and constraints. The conceptual
model covers all the concepts required for defining an MBT
technique. The conceptual model is implemented as a UML
Class diagram with constraints specified in the Object
Constraint Language (OCL) using the IBM Rational Software
Architect tool, which facilitates automated validation of
constraints on the instances of the models (Object diagrams in
our case). Notice that in this paper, we formalized only a small
subset of the standard related to the test case design and more
comprehensive formalization of the standard is our future
work.

The formalization of the conceptual model offers several
benefits including: 1) It provides a unified meaning of MBT
concepts based on the standard terminology to researchers and
practitioners, 2) Such formalization may be used as a reference
model to develop MBT tools in the future, 3) The conceptual
model serve as a starting point to define a new MBT technique,
4) The conceptual model with the tool support can be used to
automatically determine conformance of an MBT technique in
terms of all the mandatory concepts to the standard, 5) As a
reference model, the conceptual model may facilitate
communication among different standardization bodies (e.g.,
ETSI and OMG) that can potentially initiate a joint effort for
the standardization of MBT.

To validate the conceptual model, we instantiated the
concepts in the conceptual model for our existing MBT
techniques. Such instantiation provided us feedback on the
conceptual model, which was further used to refine the
conceptual model. Finally, we also report our experiences and
lessons learnt from the development and validation of the

978-1-4673-6908-4/15/$31.00 c© 2015 IEEE MODELS 2015, Ottawa, ON, Canada
MDE in Practice

52

396

conceptual model. The rest of the paper is organized as
follows: We present the conceptual model of the standard in
Section II followed by the methodology to use the conceptual
model in Section III. Section IV presents the mapping of
various MBT techniques to the concepts in the conceptual
model and we present results and discussion based on the
mapping in Section III. Section VI presents the related work,
whereas we conclude the paper in Section VII.

II. CONCEPTUAL MODEL OF THE ISO/IEC/IEEE 29119
SOFTWARE TESTING STANDARD

In this section, we provide the conceptual model that we
developed based on the standard. Notice that for the sake of
clarity we provide different views of the model based on the
concepts and in the implementation all the concepts are linked.
The conceptual model was implemented as a set of UML class
diagrams together with OCL constraints in the IBM’s Rational

Software Architecture (RSA) tool. In this paper, we provide a
few OCL constraints as examples. The RSA tool allows
automated validation of OCL constraints when the conceptual
model is instantiated as object diagrams. TABLE I shows the
list of defintions of various concepts from the standard. Notice
that these definitions are taken as it is from the standard. To
avoid cluttering, we didn’t provide each definition within
double quotes.

A. Test Case and Test Set
The first and foremost concept in testing is Test Case whose
definition is shown in Concept 1 in TABLE I and is modeled
as an abstract concept Test Case in Fig. 1. Since the ISO
standard is defined for software testing in general, we
specialized the concept into two concepts to support MBT:
Abstract Test Case and Concrete Test Case as shown in Fig. 2
and Fig. 3 respectively.

TABLE I RELEVANT DEFINITION FROM ISO/IEC/IEEE 29119 SOFTWARE TESTING STANDARD [14]

Concept Definition

1 Test Case

Set of test case preconditions, inputs (including actions, where applicable), and
expected results, developed to drive the execution of a test item to meet test
objectives, including correct implementation, error identification, checking
quality, and other valued information

2 Test Set Set of one or more test cases with a common constraint on their execution

3
Test Design
Technique (Test
Model)

Activities, concepts, processes, and patterns used to construct a test model that is
used to identify test conditions for a test item, derive corresponding test coverage
items, and subsequently derive or select test cases

4 Test Case
Specification Documentation of a set of one or more test cases

5 Test Basis Body of knowledge used as the basis for the design of tests and test cases

6 Test Procedure
Sequence of test cases in execution order, and any associated actions that may be
required to set up the initial preconditions and any wrap up activities post
execution

7 Test Procedure
Specification

Specification document specifying one or more test procedures, which are
collections of test cases to be executed for a particular objective

8 Test Data
Data created or selected to satisfy the input requirements for executing one or
more test cases, which may be defined in the Test Plan, test case or test
procedure

9 Test Item Work product that is an object of testing

10 Test Plan
Detailed description of test objectives to be achieved and the means and schedule
for achieving them, organized to coordinate testing activities for some test item
or set of test items

11 Feature Set Collection of items which contain the test conditions of the test item to be tested
which can be collected from risks, requirements, functions, models, etc.

12
Test
Condition/Test
Requirement

Testable aspect of a component or system, such as a function, transaction,
feature, quality attribute, or structural element identified as a basis for testing

13 Test Strategy Part of the Test Plan that describes the approach to testing for a specific test
project or test sub-process or sub-processes

14 Test Coverage Degree, expressed as a percentage, to which specified test coverage items have
been exercised by a test case or test cases

15 Test Coverage
Item

Attribute or combination of attributes that is derived from one or more test
conditions by using a test design technique that enables the measurement of the
thoroughness of the test execution

16 Test Result
Indication of whether or not a specific test case has passed or failed, i.e. if the
actual result observed as test item output corresponds to the expected result or if
deviations were observed

17 Actual Result Set of behaviours or conditions of a test item, or set of conditions of associated
data or the test environment, observed as a result of test execution

18 Expected Result Observable predicted behaviour of the test item under specified conditions based
on its specification or another source

19 Pass or Fail
Criteria

Decision rules used to determine whether a test item, or feature of a test item, has
passed or failed after testing

397

Fig. 1. Conceptual model for Abstract/Concrete Test Case and Test Set

One abstract test case can be instantiated into one or more
concrete test cases based on test data. An Abstract Test Set is a
set of one or more abstract test cases, whereas a Concrete Test
Set consists of more than one concrete test case. Depending on
how many times one abstract test case is instantiated, the size
of concrete test set can be more than the size of abstract test
set. This rule is represented as an OCL constraint below:
context AbstractTestCase inv:
self.concretetestcase->size() >1 implies
self.abstracttestset-
>collect(abstracttestset.abstracttestcase-
>size())->forAll(atsize:Integer|
self.concretetestcase-
>collect(concretetestcase.concretetestset.concr
etetestcase->size())-
>forAll(ctsize:Integer|ctsize>atsize))

On the other hand, if each abstract test case is instantiated
exactly once, the size of abstract test set and concrete test set
must be equal. This rule is represented as an OCL constraint
below:
AbstractTestCase.allInstances()-
>forAll(atc:AbstractTestCase|atc.concretetestca
se->size()=1) implies
AbstractTestSet.allInstances()-
>collect(ats:AbstractTestSet|ats.abstracttestca
se->size())->forAll(atsize:Integer|
ConcreteTestSet.allInstances()-
>collect(cts:ConcreteTestSet|cts.concretetestca
se->size())-
>forAll(ctsize:Integer|ctsize=atsize))

An Abstract Test Case (Fig. 2) comprises of three items: 1)
At least one Input/Stimulus to Test Item (Concept 9 in TABLE
I, commonly known as System Under Test in software testing
literature [15]). Example of the stimulus to a test item include
access to test item via application programming interface
(API): 2) A set of Test Data Specification related to
Input/Stimulus (e.g., specification of ranges of values of input
parameters). For example, a set of valid values of all
parameters of an API: 3) Specification of Expected Result
(Concept 18 in Table 1). For example, values of state variables
of test item representing a correct state.

A Concrete Test Case (Fig. 3) is similar to Abstract Test
Case; however the only difference is that Test Data
Specification has been realized into concrete values called as
Test Data (Concept 8, Fig. 4). In other words, the exact values
for the parameters of stimulus or other parameters of a test case
(e.g., configuration parameters) have been selected by applying
any test data generation strategy, such as equivalence
partitioning and boundary value analysis [15, 16]. Each

concrete test case has unique set of test data. This rule is
formalized as an OCL constraint below:
context ConcreteTestCase inv:
self.stimuli->isUnique(stimuli.testdata) or
self->isUnique(testdata)

Fig. 2. Conceptual model for Abstract Test Case

Fig. 3. Conceptual model for Concrete Test Case

A Test Set (Concept 2) is specialized into two types:
Abstract Test Set that contains Abstract Test Cases, whereas
Concrete Test Set contains Concrete Test Cases. The difference
between the Abstract Test Set and Concrete Test Set is the
same as Abstract Test Case and Concrete Test Case, i.e., a
Concrete Test Case has exact data values and Concrete Test
Set is composed of such concrete test cases.

Fig. 4. Conceptual model for Test Data

Notice that an MBT technique doesn’t necessarily need to
have these two levels and only Concrete Test Case and
Concrete Test Set are mandatory. An OCL constraint
implementing such rule is shown below:
AbstractTestCase.allInstances()->size() = 0
implies AbstractTestSet.allInstances()->size()
= 0

B. Test Model
The Test Model concept (Concept 3) is modeled in Fig. 5
showing its relationships to other testing concepts and is the
model used to derive abstract/concrete test cases. An example
of Test Model in UML is a UML State Machine, from which a
set of abstract/concrete test cases (e.g., a sequence of states and
transitions) can be derived. A Test Model is developed using a
Test Design Technique (Concept 3) based on Test Case
Specification (Concept 4) that documents one or more test
cases usually in textual format. Test Case Specification is
usually a subset of Test Basis (Concept 5), which is a “Body of
knowledge used as the basis for the design of test cases” [14].

398

Test basis is the first set of documents that are used for
deriving test case specifications followed by developing a test
model. Examples of test basis include a set of requirements
specifications and all other information about a test item
independent of testing considerations. In contrast, test case
specifications are documents containing all the testing
requirements for a test item. To define an MBT technique, it is
not always necessary to have documents available for test basis
and test case specifications, as we realized while working with
our industrial partners and most of the test case specifications
were rather available as tacit knowledge from test engineers
and test managers.

C. Test Procedure
Test Procedure (Concept 6) is defined by ISO as: “Sequence of
test cases in execution order, and any associated actions that
may be required to set up the initial pre-conditions and any
wrap up activities post execution” [14] and its relationships to
other related concepts are shown in Fig. 6. As for Test Case,
we specialized Test Procedure into Abstract Test Procedure
and Concrete Test Procedure and the only difference between
the both is that Abstract Test Procedure contains Test Data
Specification, whereas Concrete Test Procedure contains Test
Data. A MBT technique doesn’t necessarily need to have

separation between abstract and concrete test procedure, as is
the case with test case and test set. Moreover, a test procedure
may not even exist in a particular context and the
corresponding OCL constraint is shown below:
TestProcedure.allInstances()->size()>=0

D. Test Plan
Test Plan (Concept 10) defines the Test Objectives and Testing
Activities to achieve them. The most important part of Test
Plan is Test Strategy (Concept 13) in the context of MBT that
actually describes the approach for testing Test Item (Concept
9) based on Test Objective (e.g., functional testing or extra-
functional testing) as shown in Fig. 6. Examples of testing
activities include test generation, test minimization, and test
scheduling. In the context of the current paper, we are only
focusing on test generation as a testing activity.

A Test Item (Fig. 6) has a set of related test conditions or
test requirements (Test Condition/Test Requirement Concept
number 12) that describe the testable aspects of the Test Item,
for example, a function, transaction, or a feature that are related
to Feature Set (Concept 11, for example, features,
requirements, and functions) of the Test Item.

Fig. 5. Conceptual model for Test Model

Fig. 6. Conceptual model for Test Procedure

Fig. 7. Conceptual model for Test Plan

399

E. Test Coverage
Test Coverage (Concept 14) is calculated when a test driver
(Test Driver) executes a set of concrete test cases on Test Item
and as a result, a set of coverage items (Coverage Item/Test
Coverage Item concept 15) defined by test conditions (Test
Conditions) are covered as shown in Fig. 7. Typical examples
of test coverage of test item include code coverage, for
example, statement coverage and branch coverage.

Notice that Test Coverage in the standard specifically refers
to the coverage of coverage items on Test Item and the standard
doesn’t define an explicit concept for the coverage of Test
Model. However, the coverage of Test Model is implicitly
covered in the Test Strategy inside Test Plan. For example,
considering example of a UML state machine as a test model,
typical test coverage includes All State Coverage and All
Transition Coverage.

F. Test Result
A test driver executes a concrete test case on a test item and
uses Test Result to compare expected result specified in the test
case with the actual result obtained from the test item using a
Pass/Fail Criteria (Concept 19) to determine if the test case is
passed or failed (Fig. 8 and Fig. 9). In practice, in addition to
pass or fail, the result of a test case can also be inconclusive or
may also be an error. However, these concepts are not
represented in the standard.

III. METHODOLOGY
In this section, first we provide two key activities in automated
MBT. First, in Section III.A, we discuss about how to transit
from test basis to the derivation of one or more test models. In
Section III.B, we discuss two key types of test generators to
support generation of executable test cases. Finally in Section
III.C, we provide the two-step procedure that we used to
validate the conceptual model.

A. Designing a Test Model
Fig. 10 shows an activity diagram for defining a test model that
is used as a key component for deriving test cases and test
procedures. The activity diagram is divided into three
activities, where the first activity is related to identifying the
test basis that determines body of knowledge available to
derive test case specification, test procedure specification, and
test requirements of test item shown as three parallel activities
in Fig. 10. Notice that in a certain application context, the test
basis, test case specifications, and test procedure specifications
may not be explicitly available in the form of documents and
may be available as domain knowledge from the domain
experts. The third activity involves defining test models and
there are several possibilities for defining test models: 1) One
may need to create one test model for test case specification
and one test model for test procedure specification: 2) A test
model only for test case specification and there is no test
procedure specification available: 3) More than one test models
for test case specification and test procedure specification.

One way of MBT using UML State machines involves two
test models: 1) A class diagram capturing state variables and
stimulus as operations/signals representing the static structure
of test item: 2) A state machine modeling the behavior of test
item.

Fig. 8. Conceptual model for Test Coverage

Fig. 9. Conceptual model for Test Result

400

Fig. 10. An activity diagram for deriving test models

B. Generation of Test Cases and/or Test Procedures
In this section, we discuss the activities for transforming test
models into test cases and test procedures as shown in Fig. 11.
As a first step, an Abstract Test Generator uses test models as
input and generates Abstract Test Set applying one or more test
strategy, e.g., covering certain structural features of a the test
model (Fig. 11). In the second step, the abstract test set is
transformed into concrete test set using Concrete Test
Generator. Notice that these two levels of test generator are
dependent on the application context and only a test generator
that generates concrete test cases is mandatory. The choice of
having an abstract test generator facilitates moving some of the
complexity of platform specific test generator into concrete test
generator. Such a separation allows defining various platform
specific concrete test generators that permits generating
executable test cases in various test scripting languages such as
Java and Python. Moreover, an abstract test generator separates
the details of test strategies from the concrete test generator,
e.g., coverage criteria and facilitates incorporation of new test
strategies in abstract test generator without affecting the
implementation of concrete test generator. In case of having
only concrete test generator, all the complexity of test
strategies and platform specific details are inside the generator
and maintenance requires much more effort than using the two
types of generators.

C. Validation Procedure
The conceptual model was validated in two phases. During the
first phase, the conceptual model was developed incrementally
based on the standard’s documents. The authors validated the
conceptual model using the inspection methods. In the second
phase, the conceptual model was validated by instantiating its
concepts based on the MBT techniques from our existing
industrial applications. The two techniques were based on
UML and its extensions, whereas the third one was based on a
domain specific language. Based on these instantiations, we
obtained the final version of the conceptual model, which is
presented in the paper. Typical problems that we encountered
and eventually addressed during the revisions of conceptual

model were mostly related to incorrect cardinalities on
associations between two concepts and incorrect associations.

IV. MAPPING TO MBT TECHNIQUES
In this section, we present mapping of various concepts from
the standard to various MBT techniques that we developed
with our industrial partners in the last several years. In Section
IV.A, we present the mapping of the concepts of various MBT
techniques based on UML state machines that we applied to
several industrial case studies and Section IV.B presents the
mapping to a test case specification language that we
developed in the context of one industrial partner by defining a
domain specific language to support automated testing.

A. UML State Machine-Based Testing
In this section, we will discuss MBT using UML state
machines for supporting functional testing and robustness
testing.

1) Functional Testing : While performing functional
testing using UML state machines, we worked with the
following four case studies.

Video Conferencing System (VCS). The first case study is
about black-box system-level testing of the Videoconferencing
Systems (VSCs) developed by Cisco Systems, Norway by
means of systematic test automation [17]. We targeted one
particular VCS called C90 and we modeled all the 20
subsystems using UML state machines and UML class
diagrams.

Safety Monitoring Component (SMC). The second case
study is about MBT of Safety Monitoring Component (SMC)
developed by ABB robotics. SMC exhibits state-based
behavior and we used UML state machines to test SCM. The
implementation of SMC is in C++ [6].

Fig. 11. Activity diagram for test generators

401

TABLE II MAPPING OF CONCEPTS FROM VARIOUS MBT TECHNIQUES TO THE CONCEPTS IN THE STANDARD

Concept State Machine (SM) Aspect State Machine
(ASM) RTCM

1 Abstract Test
Case

Sequence of (State-
>Transition->State) Same as SM Sequence of

statements

2 Abstract Test Set A set of abstract test cases Same as SM A set of test case
specification

3 Concrete Test
Case

A sequence of statements
setting configuration
parameters, checking state
variables, calling APIs with
data
(In Python, Java)

Same as SM Same as SM

4 Concrete Test Set A set of concrete test cases Same as SM Same as SM

5 Stimulus Trigger of type Call/Signal
Event Change Event API

6
Test Design
Technique (Test
Model)

UML State Machine and
Class diagrams are test
models

Aspect State Machine
(ASM), Aspect Class
Diagram, UML Class
diagrams and state machines

Test Case
Specification in
RTCM

7 Test Case
Specification

Specifications about VCSs,
Safety Monitoring
Component, Bottle
Recycling System, control
system for marine seismic
acquisition

Specifications about VCSs Specifications about
VCSs

8 Test Basis Specification, Requirements
Documents, User Manuals Same as SM Same as SM

9 Test Procedure - - -

10 Test Procedure
Specification - - -

11 Test Data

Parameters of APIs of VCS
modeled on Triggers as
Signal, Call Event, Time
Event

Values of states of Test Item
and environment Parameters of API

12 Test Data
Specification Guards, Time Event Change Event Branches in test

case specifications

13 Test Item

VCS, Safety Monitoring
Component, Bottling
Recycling System, Control
System of marine seismic
acquisition

VCS VCS

14 Test Plan - - -
15 Feature Set Features of Test Items VCS Features VCS Features

16
Test
Condition/Test
Requirement

Covering each feature of
test item Covering each VCS feature Covering each VCS

feature

17 Test Strategy - - -

18
Test
Coverage/Test
Model Coverage

API Coverage, State
Coverage, Configuration
Coverage

Robustness Properties
coverage Same as SM

19 Test Coverage
Item API, Status, Configuration Property Same as SM

20 Test Result - - -
21 Actual Result State values State values State values

22 Expected Result
Specification

OCL Constraints as State
Invariants Same as SM

Conditions written
in restricted natural
language

23 Pass or Fail
Criteria

Evaluation of OCL
Constraints Same as SM String matching

Control System for Marine Seismic Acquisition. The third

case study is from WesternGeco, who is a market leader in the
field of seismic systems. The case study [10] is about a large
and complex control system for marine seismic acquisition.
The system controls tens of thousands of sensors and actuators
in its environment. The timing deadlines on the environment

are in the order of hundreds of milliseconds. The system was
developed using the Java language.

Bottle Recycling Machine. The fourth case study is an
automated bottle-recycling machine developed by Tomra AS
[10]. The system under test (SUT) was an embedded device
‘Sorter’, which was responsible to sort the bottles into their

402

appropriate destinations. The system communicated with a
number of components to guide re-cycled items through the
recycling machine to their appropriate destinations. It is
possible to cascade multiple sorters with one another, which
results in a complex recycling machine. The SUT was
developed using the C language.

Summary of Results. For the first two case studies, we
implemented UML state machines based testing techniques in
a tool called Transformation-based Tool for UML-based
Testing (TRUST) [6], for the rest of the two case studies
separate tools were developed. The third column in TABLE II
provides results for MBT solutions for these four case studies.
For all these case studies, our tools transform test models into
abstract test cases and then the abstract test cases were
transformed into executable test cases.

2) Robustness Testing: This case study is an extension of
case study 1 and is about supporting automated, model-based
robustness testing of the C90 VCS. The VCS should be robust
enough to handle the possible abnormal situations that can
occur in its operating environment and invalid inputs. For
example, C90 should be robust against hostile environment
conditions (regarding the network and other communicating
VCSs), such as high percentage of packet loss and high
percentage of corrupt packets. Such behavior is very important
for a commercial VCS and must be tested systematically and
automatically to be scalable. More details on the robustness
behavior of C90 and its functional modeling can be found in
[17]. An extended version of the TRUST tool was used for
MBT in this case. The results for this case are provided in the
fourth column. The TRUST worked in two stages: a) In the
first stage, it trans-forms test models, i.e., UML class diagrams
and state machines and Aspect class diagram and Aspect state
machines into abstract test cases: b) In the second stage, the
abstract test cases were converted into concrete test cases.

B. RTCM
In this section, first we provide a brief overview of our test
case specification language followed by summary of key
results.

1) Approach: Restricted Test Case Modeling (RTCM)
[18] is a test case specification language, which is an
extension of a language called Restricted Use Case Modeling
(RUCM) [19]. The specialty of RTCM lies in providing a
precise way of specifying natural language test case
specifications with restriction rules, easy to use template, and
a set of keywords. All the features of RTCM are captured
formally in TCMeta extending UCMeta that is a metamodel
behind RUCM. The tool support with RTCM (aToucan4Test)
supports automated generation of executable test cases from
RTCM specifications.

2) Summary of Results: We used the case study 1 (Section
IV.A) with RTCM. More details of modeling the case study
can be found in [18]. The fifth column in TABLE II shows the
results related to RTCM. In case of this approach, test

generator, i.e., aToucan4Test doesn’t generate abstract test
case and transformation is directly to executable test cases.

V. OVERALL RESULTS, EXPERIENCE AND LESSONS
LEARNT

In this section, we provide discussion on our experience of
mapping the concepts of standard to our MBT techniques.

A. Unified Meaning of MBT Concepts
The results presented in TABLE II show the mapping of the
concepts from MBT techniques based on UML state machines,
Aspect state machines (extension of UML state machines), and
RTCM (a domain specific language) [18]. As discussed in
Section IV, such mapping was performed by instantiating the
concepts of conceptual model in the IBM RSA tool. We
noticed that even though the MBT techniques are different, the
concepts can still be mapped to the standard software testing
concepts in the standard even though the standard is still
exclusively lacking model-based test design.

B. Tailoring of the Standard
Based on our experience of working with the standard, we feel
that the standard is defined at a very high level of abstraction.
Such level of abstraction, on the one hand introduces
ambiguity in understanding the concepts, whereas on the other
hand, is applicable to different types of testing techniques such
as model-based testing and code-based testing. To deal with
the ambiguity, we developed the conceptual model, whereas
with respect to its applicability to different types of testing
techniques, we demonstrated its application to three types of
testing techniques, i.e., based on standard UML state machines,
aspect state machines (extensions of UML), and RTCM—a
domain specific testing language.

C. Guidelines to Develop New MBT Technique
The proposed conceptual model can be used as a starting point
for the development of new MBT techniques. The designer of
an MBT technique needs to consider at least all the mandatory
concepts to support automated testing and ensure that all the
constraints on the conceptual model are validated to be true.
Notice that our conceptual model is generic and independent
of any modelling language. This means that it can be used to
define either totally new language for MBT or as extensions of
existing languages. We demonstrated this by mapping three
types of MBT techniques to the conceptual model in the
paper.

D. Conformance of an MBT Technique to the Standard
The implementation of the conceptual model as a metamodel
together with the OCL constraints can help to assess how
much an existing MBT technique or tool conforms to the
standard. This can particularly help industry to select the tools
and methodologies that conform to the standard since it is
well-known fact that standard-based tools and techniques are
preferred in the industry.

403

E. Enabling Communication Among Different
Standardization Bodies

The conceptual model may serve as a reference model and
may be used to enable common understanding and unified
communication among other standardization bodies focusing
on MBT such as ETSI and Object Management Group. This
can further initiate discussion among these standardization
bodies to start a joint effort on the standardization of MBT
techniques.

VI. RELATED WORK
There are a few efforts in standardization of model-based
testing that currently exists. One well-known effort in this
regard is UML Test Profile Version 1 [13] from Object
Management Group (OMG). The profile provides lightweight
extension to UML for various testing activities such as test
design, specification, and visualization. The main purpose of
the profile was to keep it general enough such that it can be
used in various domains. The profile focused on modelling the
interactions of SUT with its environment and test execution
system. Another recent standard on model-based testing is the
ETSI ES 202 951 standard published in 2011 with participation
from various MBT tool vendors, users, and research institutes.
The standard defines a language called Test Description
Language (TDL) that supports modelling test description, test
configuration, and test data. There are several software testing
standards in the literature such as IEEE 829-2008 Standard for
Software and System Test Documentation [20] and the recent
ISO/IEC/IEEE 29119 Standard [14] that combines efforts from
IEEE/ISO, and IEC. The work presented in this paper is a first
attempt towards this direction, which formalizes the testing
concepts of the ISO/IEC/IEEE 29119 standard to enable
model-based test design. One of the aims of such formalization
is to provide a common ground among the different
standardization bodies such as ETSI and OMG to develop joint
MBT standards in the future.

VII. CONCLUSION
Model-based Testing (MBT) has proven to provide a
systematic and automated way of testing complex systems and
has been area of much focus in industry and academic in the
last decade. A large number of MBT techniques and tools have
emerged targeting various types of testing. Most of the
techniques, however, lack a unified understanding of concepts
of MBT and as result decreases the interoperability among the
techniques and tools.

To provide a unified understanding of MBT concepts based
on the standard testing terminology and relationship among the
concepts, we formalizes the concepts from the recent software
testing standard: the ISO/IEC/IEEE 29119 Standard as a
conceptual model implemented as UML class diagram. A set
of constraints in OCL is also defined to automatically enforce
various constraints on the conceptual model. The conceptual
model serves as a reference model that can be used as a starting
point for developing new MBT techniques. The current version
of the conceptual model formalizes only a small subset of the
standard related to test case design.

To assess validate the conceptual model, we mapped the
concepts of various MBT techniques we developed over the
last several years with several industrial partner’s to the
conceptual model. Based on such validations, an improved
version of the conceptual model is presented in the paper. In
the future, we plan to extend our conceptual model to more
comprehensively formalize the standard.

REFERENCES

[1] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.:
Model-Based Testing of Reactive Systems: Advanced Lectures (Lecture
Notes in Computer Science). Springer-Verlag New York, Inc. (2005)

[2] Neto, A.C.D., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey
on model-based testing approaches: a systematic review. Proceedings of
the 1st ACM international workshop on Empirical assessment of
software engineering languages and technologies: held in conjunction
with the 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE) 2007, pp. 31-36. ACM, Atlanta, Georgia
(2007)

[3] Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools
Approach. Morgan-Kaufmann (2007)

[4] Weilkiens, T.: Systems Engineering with SysML/UML: Modeling,
Analysis, Design. Tim Weilkiens (2008)

[5] Ali, S., Hemmati, H.: Model-based Testing of Video Conferencing
Systems: Challenges, Lessons Learnt, and Results. In: IEEE
International Conference on Software Testing, Verification, and
Validation (ICST). (Year)

[6] Ali, S., Hemmati, H., Holt, N.E., Arisholm, E., Briand, L.C.: Model
Transformations as a Strategy to Automate Model-Based Testing - A
Tool and Industrial Case Studies. Simula Research Laboratory,
Technical Report (2010-01) (2010)

[7] Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: Generating Test Data from
OCL Constraints with Search Techniques. Simula Research Laboratory
(2012)

[8] Hemmati, H., Arcuri, A., Briand, L.: Reducing the Cost of Model-Based
Testing through Test Case Diversity. 22nd IFIP International
Conference on Testing Software and Systems (ICTSS), (2010)

[9] Hemmati, H., Arcuri, A., Briand, L.: Achieving scalable model-based
testing through test case diversity. ACM Trans. Softw. Eng. Methodol.
22, 1-42 (2013)

[10] Iqbal, M.Z., Ali, S., Yue, T., Briand, L.: Experiences of Applying
UML/MARTE on Three Industrial Projects. In: ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems (MODELS), pp. 642-658. Springer Berlin Heidelberg, (Year)

[11] Sarma, M., Murthy, P.V.R., Jell, S., Ulrich, A.: Model-based testing in
industry: a case study with two MBT tools. Proceedings of the 5th
Workshop on Automation of Software Test, pp. 87-90. ACM, Cape
Town, South Africa (2010)

[12] Shafique, M., Labiche, Y.: A systematic review of state-based test tools.
Int J Softw Tools Technol Transfer 1-18 (2013)

[13] UML Testing Profile (UTP) Version 1, 2014, http://utp.omg.org/
[14] ISO/IEC/IEEE 29119 Software Testing, 2014,

http://www.softwaretestingstandard.org/
[15] Binder, R.V.: Testing object-oriented systems: models, patterns, and

tools. Addison-Wesley Longman Publishing Co., Inc. (1999)
[16] Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A

Systematic Review of the Application and Empirical Investigation of
Search-Based Test Case Generation. IEEE Transactions on Software
Engineering 99, (2009)

[17] Ali, S., Briand, L.C., Hemmati, H.: Modeling Robustness Behavior
Using Aspect-Oriented Modeling to Support Robustness Testing of
Industrial Systems. Software and Systems Modeling 11, (2012)

[18] Zhang, M., Yue, T., Ali, S.: A Keyword and Restricted Natural
Language Based Test Case Specification Language for Automated
Testing Simula Research Laboratory (TR 2014-01) (2014)

404

[19] Yue, T., Briand, L., Labiche, Y.: Facilitating the Transition from Use
Case Models to Analysis Models: Approach and Experiments.
Transactions on Software Engineering and Methodology (TOSEM) 22,
(2013)

[20] IEEE Standard for Software and System Test Documentation, 2014,
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=457827

405

