-
Notifications
You must be signed in to change notification settings - Fork 0
/
settings.py
69 lines (64 loc) · 2.67 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
parser = argparse.ArgumentParser()
# Experiment name
parser.add_argument('-experiment_name',
type=str,
default="GR_MNIST_classifier",
help='Name of this experiment.')
# ID of the NNI experiment to refer to
parser.add_argument('-experiment_id',
type=str,
default="vpeqjlkr",
help='ID of the NNI experiment whose results are to be used.')
# ID of the NNI trial providing the best test accuracy
parser.add_argument('-best_test_id',
type=str,
default="euX7c",
help='ID of the NNI trial that gave the highest test accuracy.')
# Path of weights to perform test only (if do_training is False)
parser.add_argument('-trained_layers_path',
type=str,
default="./results/layers/optimized/spike_classifier/fix_len_noisy_temp_jitter/vpeqjlkr_ref.pt",
help='Path of the weights to be loaded to perform test only (given do_training is set to False).')
# Auto-selection of GPU
parser.add_argument('-auto_gpu',
type=bool,
default=False,
help='Enable or not auto-selection of GPU to use.')
# Manual selection of GPU
parser.add_argument('-manual_gpu_idx',
type=int,
default=1,
help='Set which GPU to use.')
# (maximum) GPU memory fraction to be allocated
parser.add_argument('-gpu_mem_frac',
type=float,
default=0.3,
help='The maximum GPU memory fraction to be used by this experiment.')
# Set seed usage
parser.add_argument('-use_seed',
type=bool,
default=True,
help='Set if a seed is to be used or not.')
# Enable mutliple seeds
parser.add_argument('-multi_seed',
type=bool,
default=False,
help='Set if more than one seed is to be used or not.')
# Number of seeds
parser.add_argument('-n_seed',
type=int,
default=10,
help='Set the number of seeds if more than one is needed.')
# Specify if running for debug
parser.add_argument('-debugging',
type=bool,
default=False,
help='Set if the run is to debug the code or not.')
# Save heatmap
parser.add_argument('-save_hm',
type=bool,
default=True,
help='Save or not the heatmap produced for behaviour classification.')
args = parser.parse_args()
settings = vars(args)