From ac9a3f853b2928c5f62ca6b46048d48358b73e91 Mon Sep 17 00:00:00 2001 From: Satwant Rana <4613501+satrana42@users.noreply.github.com> Date: Fri, 20 Sep 2024 21:46:52 +0530 Subject: [PATCH] Remove a file checked in by mistake (#566) This change removes a file mistakenly added in #565. --- 1 | 1749 ------------------------------------------------------------- 1 file changed, 1749 deletions(-) delete mode 100644 1 diff --git a/1 b/1 deleted file mode 100644 index 0672a6e8..00000000 --- a/1 +++ /dev/null @@ -1,1749 +0,0 @@ -from datetime import datetime, timezone, date -from typing import Optional, List, Union - -import pandas as pd -import pytest - -from fennel.connectors import Webhook, source -from fennel.datasets import ( - dataset, - pipeline, - field, - Dataset, - Count, - Average, - Stddev, - Distinct, - ExpDecaySum, - index, -) -from fennel.dtypes import struct, Window, Continuous, Session, Hopping -from fennel.expr import col -from fennel.lib import ( - meta, - inputs, - expectations, - expect_column_values_to_be_between, -) -from fennel.testing import * - -__owner__ = "eng@fennel.ai" - - -def test_multiple_date_time(): - with pytest.raises(ValueError) as e: - - @dataset - class UserInfoDataset: - user_id: int = field(key=True) - name: str - gender: str - # Users date of birth - dob: str - age: int - account_creation_date: datetime - country: Optional[str] - timestamp: datetime - - _ = InternalTestClient() - assert ( - str(e.value) == "Multiple timestamp fields are not supported in " - "dataset `UserInfoDataset`. Please set one of the datetime fields to be the timestamp field." - ) - - -def test_invalid_retention_window(): - with pytest.raises(TypeError) as e: - - @dataset(history=324) - class Activity: - user_id: int - action_type: float - amount: Optional[float] - timestamp: datetime - - assert ( - str(e.value) == "duration 324 must be a specified as a string for eg. " - "1d/2m/3y." - ) - - -def test_invalid_select(): - with pytest.raises(Exception) as e: - - @meta(owner="test@test.com") - @dataset - class A: - a1: int = field(key=True) - a2: int - a3: str - a4: float - t: datetime - - @meta(owner="thaqib@fennel.ai") - @dataset - class B: - a1: int - a2: str - t: datetime - - @pipeline - @inputs(A) - def from_a(cls, a: Dataset): - return a.select("a2", "a3") - - assert ( - str(e.value) - == """invalid select - '[Pipeline:from_a]->select node' key field : `a1` must be in columns""" - ) - - -def test_invalid_assign(): - with pytest.raises(Exception) as e: - - @meta(owner="test@test.com") - @dataset - class A: - a1: int = field(key=True) - a2: int - t: datetime - - @meta(owner="thaqib@fennel.ai") - @dataset - class B: - a1: int - a2: str - t: datetime - - @pipeline - @inputs(A) - def from_a(cls, a: Dataset): - return a.assign("a1", float, lambda df: df["a1"] * 1.0) - - assert ( - str(e.value) == "Field `a1` is a key or timestamp field in " - "schema of assign node input '[Dataset:A]'. Value fields are: ['a2']" - ) - - -def test_select_drop_invalid_param(): - - with pytest.raises(ValueError) as e: - - @meta(owner="test@test.com") - @dataset - class A: - a1: int = field(key=True) - a2: int - a3: str - a4: float - t: datetime - - @meta(owner="thaqib@fennel.ai") - @dataset - class B1: - a1: int = field(key=True) - a2: int - t: datetime - - @pipeline - @inputs(A) - def from_a(cls, a: Dataset): - return a.select("a1", "a2", columns=["a1", "a2"]) - - assert ( - str(e.value) - == "can only specify either 'columns' or positional arguments to select, not both." - ) - - with pytest.raises(ValueError) as e: - - @meta(owner="test@test.com") - @dataset - class A: - a1: int = field(key=True) - a2: int - a3: str - a4: float - t: datetime - - @meta(owner="thaqib@fennel.ai") - @dataset - class C: - a1: int = field(key=True) - a2: int - t: datetime - - @pipeline - @inputs(A) - def from_a_drop(cls, a: Dataset): - return a.drop("a3", "a4", columns=["a3", "a4"]) - - assert ( - str(e.value) - == "can only specify either 'columns' or positional arguments to drop, not both." - ) - - with pytest.raises(ValueError) as e: - - @meta(owner="test@test.com") - @dataset - class A: - a1: int = field(key=True) - a2: int - a3: str - a4: float - t: datetime - - @meta(owner="thaqib@fennel.ai") - @dataset - class D: - a1: int = field(key=True) - a2: int - t: datetime - - @pipeline - @inputs(A) - def from_a_drop(cls, a: Dataset): - return a.drop() - - assert ( - str(e.value) - == "must specify either 'columns' or positional arguments to drop." - ) - - -@meta(owner="test@test.com") -@dataset -class RatingActivity: - userid: int - rating: float - movie: str - t: datetime - - -def strip_whitespace(s): - return "".join(s.split()) - - -def test_incorrect_assign_expr_type(): - with pytest.raises(TypeError) as e: - - @meta(owner="test@test.com") - @dataset - class RatingActivityTransformed: - userid: int - rating_sq: float - movie_suffixed: str - t: datetime - - @pipeline - @inputs(RatingActivity) - def transform(cls, rating: Dataset): - return rating.assign( - rating_sq=(col("rating") * col("rating")).astype(str), - movie_suffixed=col("movie") - .str.concat("_suffix") - .astype(int), - ).drop("rating", "movie") - - expected_err = "'movie_suffixed' is expected to be of type `int`, but evaluates to `str`. Full expression: `col('movie') + \"_suffix\"`" - assert expected_err in str(e.value) - - with pytest.raises(TypeError) as e2: - - @meta(owner="test@test.com") - @dataset - class RatingActivityTransformed2: - userid: int - rating_sq: int - movie_suffixed: str - t: datetime - - @pipeline - @inputs(RatingActivity) - def transform(cls, rating: Dataset): - return rating.assign( - rating_sq=(col("rating") * col("rating")).astype(float), - movie_suffixed=col("movie") - .str.concat("_suffix") - .astype(str), - ).drop("rating", "movie") - - assert ( - str(e2.value) - == """[TypeError('Field `rating_sq` has type `float` in `pipeline transform output value` schema but type `int` in `RatingActivityTransformed2 value` schema.')]""" - ) - - with pytest.raises(ValueError) as e2: - - @meta(owner="test@test.com") - @dataset - class RatingActivityTransformed3: - userid: int - rating_sq: int - movie_suffixed: str - t: datetime - - @pipeline - @inputs(RatingActivity) - def transform(cls, rating: Dataset): - return rating.assign( - rating_sq=(col("rating") % col("rating")).astype(float), - movie_suffixed=(col("movie") + "_suffix").astype(str), - ).drop("rating", "movie") - - assert ( - str(e2.value) - == """invalid assign - '[Pipeline:transform]->assign node' error in expression for column `movie_suffixed`: Failed to compile expression: invalid expression: both sides of '+' must be numeric types but found String & String, left: col(movie), right: lit(String("_suffix"))""" - ) - - -def test_incorrect_filter_expr_type(): - with pytest.raises(TypeError) as e: - - @meta(owner="test@test.com") - @dataset - class RatingActivityFiltered: - userid: int - rating: float - t: datetime - - @pipeline - @inputs(RatingActivity) - def transform(cls, rating: Dataset): - return rating.filter(col("rating") + 3.5).drop("movie") - - assert ( - str(e.value) - == """Filter expression must return type bool, found float.""" - ) - - -def test_expectations_on_aggregated_datasets(): - with pytest.raises(ValueError) as e: - - @meta(owner="test@test.com") - @dataset - class PositiveRatingActivity: - cnt_rating: int - movie: str = field(key=True) - t: datetime - - @expectations - def dataset_expectations(cls): - return [ - expect_column_values_to_be_between( - column=str(cls.cnt_rating), min_value=0, max_value=100 - ), - ] - - @pipeline - @inputs(RatingActivity) - def filter_positive_ratings(cls, rating: Dataset): - filtered_ds = rating.filter(lambda df: df["rating"] >= 3.5) - filter2 = filtered_ds.filter( - lambda df: df["movie"].isin(["Jumanji", "Titanic", "RaOne"]) - ) - return filter2.groupby("movie").aggregate( - [ - Count( - window=Continuous("forever"), - into_field=str(cls.cnt_rating), - ), - ], - ) - - assert ( - str(e.value) - == "Dataset PositiveRatingActivity has a terminal aggregate node with Continuous windows, we currently dont support expectations on continuous windows.This is because values are materialized into buckets which are combined at read time." - ) - - # Discrete window is fine - @meta(owner="test@test.com") - @dataset - class PositiveRatingActivity2: - cnt_rating: int - movie: str = field(key=True) - t: datetime - - @expectations - def dataset_expectations(cls): - return [ - expect_column_values_to_be_between( - column=str(cls.cnt_rating), min_value=0, max_value=100 - ), - ] - - @pipeline - @inputs(RatingActivity) - def filter_positive_ratings(cls, rating: Dataset): - filtered_ds = rating.filter(lambda df: df["rating"] >= 3.5) - filter2 = filtered_ds.filter( - lambda df: df["movie"].isin(["Jumanji", "Titanic", "RaOne"]) - ) - return filter2.groupby("movie").aggregate( - [ - Count( - window=Hopping("7d", "1d"), - into_field=str(cls.cnt_rating), - ), - ], - ) - - -def test_incorrect_aggregate(): - with pytest.raises(ValueError) as e: - - @meta(owner="test@test.com") - @dataset - class PositiveRatingActivity: - cnt_rating: int - unique_ratings: int - movie: str = field(key=True) - t: datetime - - @pipeline - @inputs(RatingActivity) - def filter_positive_ratings(cls, rating: Dataset): - filtered_ds = rating.filter(lambda df: df["rating"] >= 3.5) - filter2 = filtered_ds.filter( - lambda df: df["movie"].isin(["Jumanji", "Titanic", "RaOne"]) - ) - return filter2.groupby("movie").aggregate( - [ - Count( - window=Continuous("forever"), - into_field=str(cls.cnt_rating), - ), - Count( - window=Continuous("forever"), - into_field=str(cls.unique_ratings), - of="rating", - unique=True, - ), - ], - ) - - assert ( - str(e.value) - == "Invalid aggregate `window=Continuous(duration='forever') into_field='unique_ratings' of='rating' unique=True approx=False dropnull=False`: Exact unique counts are not yet supported, please set approx=True" - ) - - with pytest.raises(TypeError) as e: - - @meta(owner="test@test.com") - @dataset - class PositiveRatingActivity2: - cnt_rating: int - unique_ratings: int - movie: str = field(key=True) - t: datetime - - @pipeline - @inputs(RatingActivity) - def count_distinct_pipeline(cls, rating: Dataset): - filtered_ds = rating.filter(lambda df: df["rating"] >= 3.5) - filter2 = filtered_ds.filter( - lambda df: df["movie"].isin(["Jumanji", "Titanic", "RaOne"]) - ) - return filter2.groupby("movie").aggregate( - [ - Count( - window=Continuous("forever"), - into_field=str(cls.cnt_rating), - ), - Distinct( - window=Continuous("forever"), - into_field=str(cls.unique_ratings), - of="rating", - unordered=True, - ), - ], - ) - - assert ( - str(e.value) - == "Cannot use distinct for field `rating` of type `float`, as it is not hashable" - ) - - with pytest.raises(ValueError) as e: - - @meta(owner="test@test.com") - @dataset - class PositiveRatingActivity3: - cnt_rating: int - unique_users: int - movie: str = field(key=True) - t: datetime - - @pipeline - @inputs(RatingActivity) - def count_distinct_pipeline(cls, rating: Dataset): - filtered_ds = rating.filter(lambda df: df["rating"] >= 3.5) - filter2 = filtered_ds.filter( - lambda df: df["movie"].isin(["Jumanji", "Titanic", "RaOne"]) - ) - return filter2.groupby("movie").aggregate( - [ - Count( - window=Continuous("forever"), - into_field=str(cls.cnt_rating), - ), - Distinct( - window=Continuous("forever"), - into_field=str(cls.unique_users), - of="userid", - unordered=False, - ), - ], - ) - - assert ( - str(e.value) - == "Invalid aggregate `window=Continuous(duration='forever') into_field='unique_users' of='userid' unordered=False dropnull=False`: Distinct requires unordered=True" - ) - - with pytest.raises(TypeError) as e: - - @meta(owner="test@test.com") - @dataset - class Ratings: - cnt_rating: int - avg_rating: float - stddev: float - movie: str = field(key=True) - t: datetime - - @pipeline - @inputs(RatingActivity) - def get_stddev_ratings(cls, rating: Dataset): - return rating.groupby("movie").aggregate( - [ - Count( - window=Continuous("forever"), - into_field=str(cls.cnt_rating), - ), - Average( - window=Continuous("forever"), - into_field=str(cls.avg_rating), - of="rating", - default=0, - ), - Stddev( - window=Continuous("forever"), - into_field=str(cls.stddev), - of="movie", # invalid type for ratings - ), - ], - ) - - assert ( - str(e.value) - == "Cannot get standard deviation of field movie of type str" - ) - - -def test_invalid_struct_type(): - with pytest.raises(TypeError) as e: - - @struct - class Car: - model: str - year: int - - def set_year(self, year: int): - self.year = year - - assert ( - str(e.value) - == "Struct `Car` contains method `set_year`, which is not allowed." - ) - - with pytest.raises(TypeError) as e: - - @struct - class Car2: - model: str - year: int - - @expectations - def get_expectations(cls): - return [ - expect_column_values_to_be_between( - column="year", min_value=1, max_value=100, mostly=0.95 - ) - ] - - assert ( - str(e.value) - == "Struct `Car2` contains method `get_expectations`, which is not " - "allowed." - ) - - with pytest.raises(ValueError) as e: - - @struct - class Car3: - model: str - year: int = 1990 - - assert ( - str(e.value) - == "Struct `Car3` contains attribute `year` with a default value, " - "`1990` which is not allowed." - ) - - with pytest.raises(ValueError) as e: - - @struct - @meta(owner="test@test.com") - class Car4: - model: str - year: int - - assert ( - str(e.value) - == "Struct `Car4` contains decorator @meta which is not allowed." - ) - - with pytest.raises(Exception) as e: - - @struct - class Car5: - model: str - sibling_car: Optional["Car"] - year: int - - assert ( - str(e.value) - == "Struct `Car5` contains forward reference `sibling_car` which is " - "not allowed." - ) - - with pytest.raises(TypeError) as e: - - class Manufacturer: - name: str - country: str - timestamp: datetime - - @struct - class Car6: - model: str - manufacturer: Optional[Manufacturer] - year: int - - assert ( - str(e.value) == "Struct `Car6` contains attribute `manufacturer` " - "of a non-struct type, which is not allowed." - ) - - with pytest.raises(Exception) as e: - - class Manufacturer: - name: str - country: str - timestamp: datetime - - @struct - class Car7: - model: str - manufacturer: List[Manufacturer] - year: int - - assert ( - str(e.value) == "Struct `Car7` contains attribute `manufacturer` " - "of a non-struct type, which is not allowed." - ) - - with pytest.raises(Exception) as e: - - class NotStruct: - num: int - - @struct - class Manufacturer: - name: str - country: str - s: NotStruct - - assert ( - str(e.value) == "Struct `Manufacturer` contains attribute `s` of a " - "non-struct type, which is not allowed." - ) - - with pytest.raises(TypeError) as e: - - @struct - class Car8: - model: str - year: int - - @struct - class Bike: - model: str - year: int - - @dataset - class Vehicle: - vehicle: Union[Car8, Bike] - timestamp: datetime - - assert ( - str(e.value) - == "Invalid type for field `vehicle` in dataset Vehicle: Multiple " - "fennel structs found `Car8, Bike`" - ) - - -def test_dataset_with_pipes(): - @dataset - class XYZ: - user_id: int - name: str - timestamp: datetime - - with pytest.raises(Exception) as e: - - @dataset - class ABCDataset2: - a: int = field(key=True) - b: int = field(key=True) - c: int - d: datetime - - @pipeline - def create_pipeline(cls, a: Dataset): - return a - - assert ( - str(e.value) - == "pipeline `create_pipeline` must have Datasets as @input parameters." - ) - - with pytest.raises(TypeError) as e: - - @dataset - class ABCDataset3: - a: int = field(key=True) - b: int = field(key=True) - c: int - d: datetime - - @pipeline # type: ignore - @inputs(XYZ) - def create_pipeline(a: Dataset): # type: ignore - return a - - assert ( - str(e.value) - == "pipeline functions are classmethods and must have cls as the " - "first parameter, found `a` for pipeline `create_pipeline`." - ) - - -@mock -def test_pipeline_input_validation_during_sync(client): - with pytest.raises(ValueError) as e: - - @meta(owner="eng@fennel.ai") - @dataset - class XYZ: - user_id: int - name: str - timestamp: datetime - - @meta(owner="eng@fennel.ai") - @dataset - class ABCDataset: - user_id: int - name: str - timestamp: datetime - - @pipeline - @inputs(XYZ) - def create_pipeline(cls, a: Dataset): - return a - - client.commit(message="msg", datasets=[ABCDataset]) - assert ( - str(e.value) - == "Dataset `XYZ` is an input to the pipelines: `['ABCDataset.create_pipeline']` but is not synced. Please add it to the sync call." - ) - - -def test_dataset_incorrect_join(): - with pytest.raises(ValueError) as e: - - @dataset - class XYZ: - user_id: int - name: str - timestamp: datetime - - @dataset - class ABCDataset: - a: int = field(key=True) - b: int = field(key=True) - c: int - d: datetime - - @pipeline - @inputs(XYZ) - def create_pipeline(cls, a: Dataset): - b = a.transform(lambda x: x) - return a.join(b, how="left", on=["user_id"]) # type: ignore - - assert ( - str(e.value) - == "Cannot join with an intermediate dataset, i.e something defined inside a pipeline. Only joining against keyed datasets is permitted." - ) - - with pytest.raises(TypeError) as e: - - @dataset - class XYZ: - user_id: Optional[int] - agent_id: int - name: str - timestamp: datetime - - @dataset(index=True) - class ABC: - user_id: int = field(key=True) - agent_id: int = field(key=True) - age: int - timestamp: datetime - - @dataset - class XYZJoinedABC: - user_id: int - name: str - age: int - timestamp: datetime - - @pipeline - @inputs(XYZ, ABC) - def create_pipeline(cls, a: Dataset, b: Dataset): - c = a.join(b, how="inner", on=["user_id", "agent_id"]) # type: ignore - return c - - assert ( - str(e.value) - == "Fields used in a join operator must not be optional in left schema, found `user_id` of " - "type `Optional[int]` in `'[Pipeline:create_pipeline]->join node'`" - ) - - -def test_dataset_incorrect_join_fields(): - with pytest.raises(ValueError) as e: - - @dataset - class XYZ: - user_id: int - name: str - timestamp: datetime - - @dataset(index=True) - class ABC: - user_id: int = field(key=True) - age: int - timestamp: datetime - - @dataset - class XYZJoinedABC: - user_id: int - name: str - age: int - timestamp: datetime - - @pipeline - @inputs(XYZ, ABC) - def create_pipeline(cls, a: Dataset, b: Dataset): - c = a.join(b, how="inner", on=["user_id"], fields=["rank"]) # type: ignore - return c - - assert ( - str(e.value) - == "Field `rank` specified in fields ['rank'] doesn't exist in " - "allowed fields ['age', 'timestamp'] of right schema of " - "'[Pipeline:create_pipeline]->join node'." - ) - - with pytest.raises(ValueError) as e: - - @dataset - class XYZ: - user_id: int - name: str - timestamp: datetime - - @dataset(index=True) - class ABC: - user_id: int = field(key=True) - age: int - timestamp: datetime - - @dataset - class XYZJoinedABC1: - user_id: int - name: str - age: int - timestamp: datetime - - @pipeline - @inputs(XYZ, ABC) - def create_pipeline(cls, a: Dataset, b: Dataset): - c = a.join(b, how="inner", on=["user_id"], fields=["user_id"]) # type: ignore - return c - - assert ( - str(e.value) - == "Field `user_id` specified in fields ['user_id'] doesn't exist in " - "allowed fields ['age', 'timestamp'] of right schema of " - "'[Pipeline:create_pipeline]->join node'." - ) - - with pytest.raises(ValueError) as e: - - @dataset - class XYZ: - user_id: int - name: str - timestamp: datetime - - @dataset(index=True) - class ABC: - user_id: int = field(key=True) - age: int - timestamp: datetime - - @dataset - class XYZJoinedABC2: - user_id: int - name: str - age: int - timestamp: datetime - - @pipeline - @inputs(XYZ, ABC) - def create_pipeline(cls, a: Dataset, b: Dataset): - c = a.join(b, how="inner", on=["user_id"], fields=["timestamp"]) # type: ignore - return c - - assert ( - str(e.value) - == "Field `timestamp` specified in fields ['timestamp'] already " - "exists in left schema of '[Pipeline:create_pipeline]->join node'." - ) - - with pytest.raises(ValueError) as e: - - @dataset - class XYZ: - user_id: int - name: str - age: int - timestamp: datetime - - @dataset(index=True) - class ABC: - user_id: int = field(key=True) - gender: str - age: int - timestamp: datetime - - @dataset - class XYZJoinedABC3: - user_id: int - name: str - age: int - timestamp: datetime - - @pipeline - @inputs(XYZ, ABC) - def create_pipeline(cls, a: Dataset, b: Dataset): - c = a.join(b, how="inner", on=["user_id"]) # type: ignore - return c - - assert ( - str(e.value) - == "Column name collision. `age` already exists in schema of left input " - "'[Dataset:XYZ]', while joining with '[Dataset:ABC]'" - ) - - with pytest.raises(ValueError) as e: - - @dataset - class XYZ: - user_id: int - name: str - age: int - timestamp: datetime - - @dataset(index=True) - class ABC: - user_id: int = field(key=True) - gender: str - age: int - timestamp: datetime - - @dataset - class XYZJoinedABC2: - user_id: int - name: str - age: int - timestamp: datetime - - @pipeline - @inputs(XYZ, ABC) - def create_pipeline(cls, a: Dataset, b: Dataset): - c = a.join(b, how="inner", on=["user_id"], fields=["gender", "age"]) # type: ignore - return c - - assert ( - str(e.value) - == "Column name collision. `age` already exists in schema of left input " - "'[Dataset:XYZ]', while joining with '[Dataset:ABC]'" - ) - - -def test_dataset_incorrect_join_bounds(): - with pytest.raises(ValueError) as e: - - @dataset - class A: - a1: int = field(key=True) - t: datetime - - @dataset - class B: - b1: int = field(key=True) - t: datetime - - @dataset - class ABCDataset1: - a1: int = field(key=True) - t: datetime - - @pipeline - @inputs(A, B) - def pipeline1(cls, a: Dataset, b: Dataset): - return a.join( - b, - how="left", - left_on=["a1"], - right_on=["b1"], - within=("0s",), # type: ignore - ) - - assert "Should be a tuple of 2 values" in str(e.value) - - with pytest.raises(ValueError) as e: - - @dataset - class A: - a1: int = field(key=True) - t: datetime - - @dataset - class B: - b1: int = field(key=True) - t: datetime - - @dataset - class ABCDataset3: - a1: int = field(key=True) - t: datetime - - @pipeline - @inputs(A, B) - def pipeline1(cls, a: Dataset, b: Dataset): - return a.join( - b, - how="left", - left_on=["a1"], - right_on=["b1"], - within=(None, "0s"), # type: ignore - ) - - assert "Neither bounds can be None" in str(e.value) - - with pytest.raises(ValueError) as e: - - @dataset - class A: - a1: int = field(key=True) - t: datetime - - @dataset - class B: - b1: int = field(key=True) - t: datetime - - @dataset - class ABCDataset4: - a1: int = field(key=True) - t: datetime - - @pipeline - @inputs(A, B) - def pipeline1(cls, a: Dataset, b: Dataset): - return a.join( - b, - how="left", - left_on=["a1"], - right_on=["b1"], - within=("forever", None), # type: ignore - ) - - assert "Neither bounds can be None" in str(e.value) - - with pytest.raises(ValueError) as e: - - @dataset - class A: - a1: int = field(key=True) - t: datetime - - @dataset - class B: - b1: int = field(key=True) - t: datetime - - @dataset - class ABCDataset5: - a1: int = field(key=True) - t: datetime - - @pipeline - @inputs(A, B) - def pipeline1(cls, a: Dataset, b: Dataset): - return a.join( - b, - how="left", - left_on=["a1"], - right_on=["b1"], - within=(None, None), # type: ignore - ) - - assert "Neither bounds can be None" in str(e.value) - - with pytest.raises(ValueError) as e: - - @dataset - class A: - a1: int = field(key=True) - t: datetime - - @dataset - class B: - b1: int = field(key=True) - t: datetime - - @dataset - class ABCDataset6: - a1: int = field(key=True) - t: datetime - - @pipeline - @inputs(A, B) - def pipeline1(cls, a: Dataset, b: Dataset): - return a.join( - b, - how="left", - left_on=["a1"], - right_on=["b1"], - within=("forever", "forever"), - ) # type: ignore - - assert "Upper bound cannot be `forever`" in str(e.value) - - -def test_dataset_optional_key(): - with pytest.raises(ValueError) as e: - - @dataset - class XYZ: - user_id: int - name: Optional[str] = field(key=True) - timestamp: datetime - - assert str(e.value) == "Key name in dataset XYZ cannot be Optional." - - -def test_protected_fields(): - with pytest.raises(Exception) as e: - - @dataset(history="324d") - class Activity: - fields: List[int] - key_fields: float - on_demand: Optional[float] - timestamp_field: datetime - - assert ( - str(e.value) - == "[Exception('Field name `fields` is reserved. Please use a " - "different name in dataset `Activity`.'), Exception('Field " - "name `key_fields` is reserved. Please use a different name in dataset `Activity`" - ".'), Exception('Field name `on_demand` is reserved. Please " - "use a different name in dataset `Activity`.'), Exception('Field " - "name `timestamp_field` is reserved. Please use a different " - "name in dataset `Activity`.')]" - ) - - -def test_join(): - with pytest.raises(ValueError) as e: - - @dataset - class A: - a1: int = field(key=True) - v: int - t: datetime - - @dataset(index=True) - class B: - b1: int = field(key=True) - v: int - t: datetime - - @dataset - class ABCDataset: - a1: int = field(key=True) - v: Optional[int] - t: datetime - - @pipeline - @inputs(A, B) - def pipeline1(cls, a: Dataset, b: Dataset): - x = a.join( - b, - how="left", - left_on=["a1"], - right_on=["b1"], - ) # type: ignore - return x - - assert ( - "Column name collision. `v` already exists in schema of left input" - in str(e.value) - ) - - -webhook = Webhook(name="fennel_webhook") - -__owner__ = "eng@fennel.ai" - - -@mock -def test_invalid_union(client): - with pytest.raises(TypeError) as e: - - @meta(owner="test@test.com") - @dataset - class A: - a1: int = field(key=True) - a2: int - t: datetime - - @meta(owner="thaqib@fennel.ai") - @dataset - class B: - a1: int = field(key=True) - a2: str - t: datetime - - @pipeline - @inputs(A) - def from_a(cls, a: Dataset): - return a + a - - assert ( - str(e.value) - == """Union over keyed datasets is currently not supported. Found dataset with keys `{'a1': }` in pipeline `from_a`""" - ) - - -@mock -def test_invalid_assign_schema(client): - @source( - webhook.endpoint("mysql_relayrides.location"), - disorder="14d", - cdc="append", - env="local", - ) - @dataset - class LocationDS: - id: int - latitude: float - longitude: float - created: datetime - - @dataset - class LocationDS2: - latitude_int: int = field(key=True) - longitude_int: int = field(key=True) - id: int - created: datetime - - @pipeline - @inputs(LocationDS) - def location_ds(cls, location: Dataset): - ds = location.assign( - "latitude_int", int, lambda df: df["latitude"] * 1000 - ) - ds = ds.assign( - "longitude_int", int, lambda df: df["longitude"] * 1000 - ) - ds = ds.drop(["latitude", "longitude"]) - return ds.groupby(["latitude_int", "longitude_int"]).first() - - client.commit( - message="msg", - datasets=[LocationDS, LocationDS2], - ) - df = pd.DataFrame( - { - "id": [1, 2, 3], - "latitude": [1.12312, 2.3423423, 2.24343], - "longitude": [1.12312, 2.3423423, 2.24343], - "created": [ - datetime.fromtimestamp(1672858163, tz=timezone.utc), - datetime.fromtimestamp(1672858163, tz=timezone.utc), - datetime.fromtimestamp(1672858163, tz=timezone.utc), - ], - } - ) - - with pytest.raises(Exception) as e: - client.log("fennel_webhook", "mysql_relayrides.location", df) - assert ( - str(e.value) - == "Error while executing pipeline `location_ds` in dataset `LocationDS2`: Error in assign node for column `latitude_int` for pipeline `LocationDS2.location_ds`, Field `latitude_int` is of type int, but the column in the dataframe is of type `Float64`. Error found during checking schema for `LocationDS2.location_ds`." - ) - - -def test_non_keyed_index_dataset_raises_exception(): - with pytest.raises(Exception) as e: - - @meta(owner="nitin@fennel.ai") - @dataset(online=True) - class Users: - user_id: str - age: int - t: datetime - - assert ( - str(e.value) - == "Index is only applicable for datasets with keyed fields. Found zero key fields for dataset : `Users`." - ) - - -def test_two_indexes_dataset_raises_exception(): - with pytest.raises(Exception) as e: - - @meta(owner="nitin@fennel.ai") - @index(type="primary", online=True, offline=None) - @index(type="primary", online=True, offline=None) - @dataset - class Users1: - user_id: str = field(key=True) - age: int - t: datetime - - assert ( - str(e.value) - == "`index` can only be called once on a Dataset. Found either more than one index decorators on Dataset " - "`Users1` or found 'index', 'offline' or 'online' param on @dataset with @index decorator." - ) - - with pytest.raises(Exception) as e: - - @meta(owner="nitin@fennel.ai") - @index(type="primary", online=True, offline=None) - @dataset(index=True) - class Users2: - user_id: str = field(key=True) - age: int - t: datetime - - assert ( - str(e.value) - == "`index` can only be called once on a Dataset. Found either more than one index decorators on Dataset " - "`Users2` or found 'index', 'offline' or 'online' param on @dataset with @index decorator." - ) - - -@mock -def test_source_and_pipelines_together(client): - @meta(owner="test@test.com") - @source(webhook.endpoint("UserInfoDataset"), disorder="14d", cdc="upsert") - @index - @dataset - class UserInfoDataset: - user_id: int = field(key=True).meta(description="User ID") # type: ignore - name: str = field().meta(description="User name") # type: ignore - age: Optional[int] - country: Optional[str] - timestamp: datetime = field(timestamp=True) - - @meta(owner="test@test.com") - @source( - webhook.endpoint("UserInfoDatasetDerived"), disorder="14d", cdc="upsert" - ) - @index - @dataset - class UserInfoDatasetDerived: - user_id: int = field(key=True, erase_key=True).meta(description="User ID") # type: ignore - name: str = field().meta(description="User name") # type: ignore - country_name: Optional[str] - ts: datetime = field(timestamp=True) - - @pipeline - @inputs(UserInfoDataset) - def get_info(cls, info: Dataset): - x = info.rename({"country": "country_name", "timestamp": "ts"}) - return x.drop(columns=["age"]) - - with pytest.raises(Exception) as e: - client.commit( - message="msg", - datasets=[UserInfoDataset, UserInfoDatasetDerived], - ) - assert ( - str(e.value) - == "Dataset `UserInfoDatasetDerived` has a source and pipelines defined. Please define either a source or pipelines, not both." - ) - - -__owner__ = "aditya@fennel.ai" - - -def test_invalid_operators_over_keyed_datasets(): - # First operator over keyed datasets is not defined - with pytest.raises(Exception) as e: - - @dataset - class A: - a1: int = field(key=True) - a2: int - t: datetime - - @dataset - class ABCDataset: - a2: int = field(key=True) - a1: int - t: datetime - - @pipeline - @inputs(A) - def pipeline1(cls, a: Dataset): - return a.groupby("a2").first() - - assert ( - str(e.value) - == "First over keyed datasets is not defined. Found dataset with keys `['a1']` in pipeline `pipeline1`" - ) - - # Latest operator over keyed datasets is not defined - with pytest.raises(Exception) as e: - - @dataset - class A: - a1: int = field(key=True) - a2: int - t: datetime - - @dataset - class ABCDataset2: - a1: int = field(key=True) - a2: int - t: datetime - - @pipeline - @inputs(A) - def pipeline1(cls, a: Dataset): - return a.groupby("a2").latest() - - assert ( - str(e.value) - == "Latest over keyed datasets is not defined. Found dataset with keys `['a1']` in pipeline `pipeline1`" - ) - - # Windows over keyed datasets is not defined - with pytest.raises(Exception) as e: - - @dataset - class Events: - event_id: int = field(key=True) - user_id: int - page_id: int - t: datetime - - @dataset - class Sessions: - user_id: int = field(key=True) - window: Window = field(key=True) - t: datetime - - @pipeline - @inputs(Events) - def pipeline1(cls, a: Dataset): - return a.groupby("user_id", window=Session("60m")).aggregate() - - assert ( - str(e.value) - == "Using 'window' param in groupby on keyed dataset is not allowed. Found dataset with keys `['event_id']` in pipeline `pipeline1`." - ) - - -@mock -def test_invalid_timestamp_field(client): - with pytest.raises(ValueError) as e: - - @dataset - class A: - a1: int = field(key=True) - a2: int - t: date = field(timestamp=True) - - client.commit(datasets=[A], message="first_commit") - - assert ( - str(e.value) - == "'date' dtype fields cannot be marked as timestamp field. Found field : `t` " - "of dtype : `` in dataset `A`" - ) - - -def test_invalid_window_aggregation(): - @dataset - class Events: - event_id: int - user_id: int - page_id: int - t: datetime - - with pytest.raises(ValueError) as e: - - @dataset - class Sessions2: - user_id: int = field(key=True) - window: Window = field(key=True) - t: datetime - count: int - - @pipeline - @inputs(Events) - def pipeline1(cls, a: Dataset): - return a.groupby("user_id", window=Session("60m")).first() - - assert ( - str(e.value) - == "Only 'aggregate' method is allowed after 'groupby' when you have defined a window." - ) - - with pytest.raises(AttributeError) as e: - - @dataset - class Sessions3: - user_id: int = field(key=True) - window: Window = field(key=True) - t: datetime - count: int - - @pipeline - @inputs(Events) - def pipeline1(cls, a: Dataset): - return a.groupby("user_id").window(window="fdfd") # type: ignore - - assert str(e.value) == "'GroupBy' object has no attribute 'window'" - - with pytest.raises(AttributeError) as e: - - @dataset - class Sessions4: - user_id: int = field(key=True) - window: Window = field(key=True) - t: datetime - count: int - - @pipeline - @inputs(Events) - def pipeline1(cls, a: Dataset): - return a.groupby("user_id", window=Session("19m")).summarize() # type: ignore - - assert str(e.value) == "'GroupBy' object has no attribute 'summarize'" - - -def test_invalid_exponential_aggregation(): - @source(webhook.endpoint("A1"), cdc="append", disorder="14d") - @dataset - class A1: - user_id: str - page_id: str - timespent: int - event_id: str - t: datetime - - with pytest.raises(TypeError) as e: - - @dataset(index=True) - class A10: - user_id: str = field(key=True) - timespent_sum: int - t: datetime - - @pipeline - @inputs(A1) - def pipeline_window(cls, event: Dataset): - return event.groupby("user_id").aggregate( - timespent_sum=ExpDecaySum( - of="timespent", - window=Continuous("forever"), - half_life="1d", - ) - ) - - assert ( - str(e.value) - == "[TypeError('Field `timespent_sum` has type `float` in `pipeline pipeline_window output value` schema but type `int` in `A10 value` schema.')]" - ) - - with pytest.raises(ValueError) as e: - - @dataset(index=True) - class A11: - user_id: str = field(key=True) - timespent_sum: float - t: datetime - - @pipeline - @inputs(A1) - def pipeline_window(cls, event: Dataset): - return event.groupby("user_id").aggregate( - timespent_sum=ExpDecaySum( - of="timespent", - window=Continuous("forever"), - half_life=3, - ) - ) - - assert ( - str(e.value) - == "Invalid half life duration for exp decay aggregation: duration 3 must be a specified as a string for eg. 1d/2m/3y." - ) - - with pytest.raises(Exception) as e: - - @dataset(index=True) - class A12: - user_id: str = field(key=True) - count: int - t: datetime - - @pipeline - @inputs(A1) - def pipeline_window(cls, event: Dataset): - return ( - event.groupby("user_id", "page_id") - .aggregate( - timespent_sum=ExpDecaySum( - of="timespent", - window=Continuous("forever"), - half_life="1d", - ), - emit="final", - ) - .groupby("user_id") - .aggregate(count=Count(window=Continuous("1h"))) - ) - - assert ( - str(e.value) == "ExpDecaySum aggregation does not support emit='final'." - ) - - with pytest.raises(ValueError) as e: - - @dataset(index=True) - class A13: - user_id: str = field(key=True) - count: int - t: datetime - - @pipeline - @inputs(A1) - def pipeline_window(cls, event: Dataset): - return ( - event.groupby("user_id", "page_id") - .aggregate( - timespent_sum=ExpDecaySum( - of="timespent", - window=Continuous("forever"), - half_life="1d", - ) - ) - .groupby("user_id") - .aggregate(count=Count(window=Continuous("1h"))) - ) - - assert ( - str(e.value) - == "Cannot add node 'Aggregate' after a terminal node in pipeline : `pipeline_window`." - ) - - with pytest.raises(ValueError) as e: - - @dataset(index=True) - class A14: - user_id: str = field(key=True) - count: int - t: datetime - - @pipeline - @inputs(A1) - def pipeline_window(cls, event: Dataset): - return ( - event.groupby("user_id", "page_id") - .aggregate( - timespent_sum=ExpDecaySum( - of="timespent", - window=Continuous("forever"), - half_life="1d", - ) - ) - .groupby("user_id") - .aggregate(count=Count(window=Continuous("1h"))) - ) - - assert ( - str(e.value) - == "Cannot add node 'Aggregate' after a terminal node in pipeline : `pipeline_window`." - ) - - with pytest.raises(TypeError) as e: - - @dataset(index=True) - class A15: - user_id: str = field(key=True) - timespent_sum: float - t: datetime - - @pipeline - @inputs(A1) - def pipeline_window(cls, event: Dataset): - return event.groupby("user_id").aggregate( - timespent_sum=ExpDecaySum( - of="page_id", - window=Continuous("forever"), - half_life="1d", - ) - ) - - assert ( - str(e.value) - == "Cannot take exponential decay sum of field page_id of type str" - )