-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathLocallyWeightedLinearRegression.py
45 lines (40 loc) · 1.32 KB
/
LocallyWeightedLinearRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import matplotlib.pyplot as plt
"""
implementation of Locally weighted linear regression in http://cs229.stanford.edu/notes/cs229-notes1.pdf
"""
class LocallyWeightedLinearRegression:
def __init__(self,tau):
self.tau=tau
self.w=None
def fit_predict(self,X,y,checkpoint_x):
m = X.shape[0]
self.n_features = X.shape[1]
extra = np.ones((m,))
X = np.c_[X, extra]
checkpoint_x=np.r_[checkpoint_x,1]
self.X=X
self.y=y
self.checkpoint_x=checkpoint_x
weight=np.zeros((m,))
for i in range(m):
weight[i]=np.exp(-(X[i]-checkpoint_x).dot((X[i]-checkpoint_x).T)/(2*(self.tau**2)))
weight_matrix=np.diag(weight)
self.w=np.linalg.inv(X.T.dot(weight_matrix).dot(X)).dot(X.T).dot(weight_matrix).dot(y)
return checkpoint_x.dot(self.w)
def fit_transform(self,X,y,checkArray):
m=len(y)
preds=[]
for i in range(m):
preds.append(self.fit_predict(X,y,checkArray[i]))
return np.array(preds)
if __name__=='__main__':
X=np.linspace(0,30,100)
y=X**2+2
X=X.reshape(-1,1)
lr=LocallyWeightedLinearRegression(tau=100)
y_pred=lr.fit_transform(X,y,X)
plt.plot(X,y,label='gt')
plt.plot(X,y_pred,label='pred')
plt.legend()
plt.show()