diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 47596c6..5c67767 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -1,12 +1,17 @@ Changelog ========= +:Version: 2.2.0 of 2023-10-08 +Added type annotations (thanks to @charlesincharge for the initiative on an initial PR). +Adapted type checking of size parameter for compatibility with mypy. + :Version: 2.1.0 of 2022-04-16 Fix by @onnoeberhard for too-small dc-component: When cumulating the generated noise, the displacement would grow too slowly in the long limit. Test that would have discovered the above issue. Other tests are now deterministic. + :Version: 2.0.0 of 2022-04-16 Allow for control over random number generator state by adding optional random_state @@ -18,9 +23,11 @@ Drop Python 2.7 support to use of NumPy's recommended default_rng constructor. Improve doc strings based on user questions. Check that fmin parameter is in the right range. + :Version: 1.1.1 of 2019-02-08 -Use numpy's sum instead of python's (thank's to RuABraun). +Use numpy's sum instead of python's (thanks to RuABraun). + :Version: 1.1 of 2019-02-08 diff --git a/colorednoise.py b/colorednoise.py index a03a35a..e4eab58 100644 --- a/colorednoise.py +++ b/colorednoise.py @@ -1,12 +1,18 @@ """Generate colored noise.""" +from typing import Union, Iterable, Optional from numpy import sqrt, newaxis, integer from numpy.fft import irfft, rfftfreq from numpy.random import default_rng, Generator, RandomState from numpy import sum as npsum -def powerlaw_psd_gaussian(exponent, size, fmin: float = 0.0, random_state=None): +def powerlaw_psd_gaussian( + exponent: float, + size: Union[int, Iterable[int]], + fmin: float = 0.0, + random_state: Optional[Union[int, Generator, RandomState]] = None + ): """Gaussian (1/f)**beta noise. Based on the algorithm in: @@ -68,17 +74,19 @@ def powerlaw_psd_gaussian(exponent, size, fmin: float = 0.0, random_state=None): """ # Make sure size is a list so we can iterate it and assign to it. - try: - size = list(size) - except TypeError: + if isinstance(size, (integer, int)): size = [size] + elif isinstance(size, Iterable): + size = list(size) + else: + raise ValueError("Size must be of type int or Iterable[int]") # The number of samples in each time series samples = size[-1] # Calculate Frequencies (we asume a sample rate of one) # Use fft functions for real output (-> hermitian spectrum) - f = rfftfreq(samples) + f = rfftfreq(samples) # type: ignore # mypy 1.5.1 has problems here # Validate / normalise fmin if 0 <= fmin <= 0.5: @@ -132,7 +140,7 @@ def powerlaw_psd_gaussian(exponent, size, fmin: float = 0.0, random_state=None): return y -def _get_normal_distribution(random_state): +def _get_normal_distribution(random_state: Optional[Union[int, Generator, RandomState]]): normal_dist = None if isinstance(random_state, (integer, int)) or random_state is None: random_state = default_rng(random_state) diff --git a/setup.py b/setup.py index d3a0dc5..2ef60e9 100644 --- a/setup.py +++ b/setup.py @@ -2,7 +2,7 @@ setup( name='colorednoise', - version='2.1.0', + version='2.2.0', description='Generate Gaussian (1/f)**beta noise (e.g. pink noise)', long_description="""Generate Gaussian distributed noise with a power law spectrum. Based on the algorithm in @@ -29,7 +29,7 @@ keywords='1/f flicker power-law correlated colored noise generator', url='http://github.com/felixpatzelt/colorednoise', download_url=( - 'https://github.com/felixpatzelt/colorednoise/archive/1.1.1.tar.gz' + 'https://github.com/felixpatzelt/colorednoise/archive/2.2.0.tar.gz' ), author='Felix Patzelt', author_email='felix@neuro.uni-bremen.de',