-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathmain.py
197 lines (168 loc) · 6.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import os
import sys
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from colorama import Fore
from importlib import import_module
import config
from dataloader import getDataloaders
from utils import save_checkpoint, get_optimizer, create_save_folder
from args import arg_parser, arch_resume_names
try:
from tensorboard_logger import configure, log_value
except BaseException:
configure = None
def getModel(arch, **kargs):
m = import_module('models.' + arch)
model = m.createModel(**kargs)
if arch.startswith('alexnet') or arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
return model
def main():
# parse arg and start experiment
global args
best_err1 = 100.
best_epoch = 0
args = arg_parser.parse_args()
args.config_of_data = config.datasets[args.data]
args.num_classes = config.datasets[args.data]['num_classes']
if configure is None:
args.tensorboard = False
print(Fore.RED +
'WARNING: you don\'t have tesnorboard_logger installed' +
Fore.RESET)
# optionally resume from a checkpoint
if args.resume:
if args.resume and os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
old_args = checkpoint['args']
print('Old args:')
print(old_args)
# set args based on checkpoint
if args.start_epoch <= 0:
args.start_epoch = checkpoint['epoch'] + 1
best_epoch = args.start_epoch - 1
best_err1 = checkpoint['best_err1']
for name in arch_resume_names:
if name in vars(args) and name in vars(old_args):
setattr(args, name, getattr(old_args, name))
model = getModel(**vars(args))
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print(
"=> no checkpoint found at '{}'".format(
Fore.RED +
args.resume +
Fore.RESET),
file=sys.stderr)
return
else:
# create model
print("=> creating model '{}'".format(args.arch))
model = getModel(**vars(args))
cudnn.benchmark = True
# define loss function (criterion) and pptimizer
criterion = nn.CrossEntropyLoss().cuda()
# define optimizer
optimizer = get_optimizer(model, args)
# set random seed
torch.manual_seed(args.seed)
Trainer = import_module(args.trainer).Trainer
trainer = Trainer(model, criterion, optimizer, args)
# create dataloader
if args.evaluate == 'train':
train_loader, _, _ = getDataloaders(
splits=('train'), **vars(args))
trainer.test(train_loader, best_epoch)
return
elif args.evaluate == 'val':
_, val_loader, _ = getDataloaders(
splits=('val'), **vars(args))
trainer.test(val_loader, best_epoch)
return
elif args.evaluate == 'test':
_, _, test_loader = getDataloaders(
splits=('test'), **vars(args))
trainer.test(test_loader, best_epoch)
return
else:
train_loader, val_loader, _ = getDataloaders(
splits=('train', 'val'), **vars(args))
# check if the folder exists
create_save_folder(args.save, args.force)
# set up logging
global log_print, f_log
f_log = open(os.path.join(args.save, 'log.txt'), 'w')
def log_print(*args):
print(*args)
print(*args, file=f_log)
log_print('args:')
log_print(args)
print('model:', file=f_log)
print(model, file=f_log)
log_print('# of params:',
str(sum([p.numel() for p in model.parameters()])))
f_log.flush()
torch.save(args, os.path.join(args.save, 'args.pth'))
scores = ['epoch\tlr\ttrain_loss\tval_loss\ttrain_err1'
'\tval_err1\ttrain_err5\tval_err5']
if args.tensorboard:
configure(args.save, flush_secs=5)
for epoch in range(args.start_epoch, args.epochs + 1):
# train for one epoch
train_loss, train_err1, train_err5, lr = trainer.train(
train_loader, epoch)
if args.tensorboard:
log_value('lr', lr, epoch)
log_value('train_loss', train_loss, epoch)
log_value('train_err1', train_err1, epoch)
log_value('train_err5', train_err5, epoch)
# evaluate on validation set
val_loss, val_err1, val_err5 = trainer.test(val_loader, epoch)
if args.tensorboard:
log_value('val_loss', val_loss, epoch)
log_value('val_err1', val_err1, epoch)
log_value('val_err5', val_err5, epoch)
# save scores to a tsv file, rewrite the whole file to prevent
# accidental deletion
scores.append(('{}\t{}' + '\t{:.4f}' * 6)
.format(epoch, lr, train_loss, val_loss,
train_err1, val_err1, train_err5, val_err5))
with open(os.path.join(args.save, 'scores.tsv'), 'w') as f:
print('\n'.join(scores), file=f)
# remember best err@1 and save checkpoint
is_best = val_err1 < best_err1
if is_best:
best_err1 = val_err1
best_epoch = epoch
print(Fore.GREEN + 'Best var_err1 {}'.format(best_err1) +
Fore.RESET)
# test_loss, test_err1, test_err1 = validate(
# test_loader, model, criterion, epoch, True)
# save test
save_checkpoint({
'args': args,
'epoch': epoch,
'best_epoch': best_epoch,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_err1': best_err1,
}, is_best, args.save)
if not is_best and epoch - best_epoch >= args.patience > 0:
break
print('Best val_err1: {:.4f} at epoch {}'.format(best_err1, best_epoch))
if __name__ == '__main__':
main()