forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_model_builders.py
286 lines (253 loc) · 9.97 KB
/
_model_builders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
from torchtune.models.gemma2._component_builders import gemma2, lora_gemma2
from torchtune.modules import TransformerDecoder
from torchtune.modules.peft import LORA_ATTN_MODULES
from functools import partial
"""
Model builders build specific instantiations using component builders. For example
the ``gemma_2b`` model builder uses the ``gemma2`` component builder.
"""
def gemma2_2b() -> TransformerDecoder:
"""
Builder for creating a Gemma2 2B model initialized w/ the default 2b parameter values
from: https://github.com/google/gemma_pytorch/blob/main/gemma/config.py
Returns:
TransformerDecoder: Instantiation of Gemma2 2B model
"""
return gemma2(
vocab_size=256_000,
num_layers=26,
num_heads=8,
head_dim=256,
num_kv_heads=4,
embed_dim=2304,
intermediate_dim=9216,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
hidden_capping_value=30.0,
final_capping_value=50.0,
sliding_window_size=4096,
)
def lora_gemma2_2b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.0,
use_dora: bool = False,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Gemma2 2B model with LoRA enabled.
The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_2b`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0
use_dora (bool): Decompose the LoRA weight into magnitude and direction, as
introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353).
quantize_base (bool): Whether to quantize base model weights
Returns:
TransformerDecoder: Instantiation of Gemma2 2B model with LoRA applied
"""
return lora_gemma2(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
vocab_size=256_000,
num_layers=26,
num_heads=8,
head_dim=256,
num_kv_heads=4,
embed_dim=2304,
intermediate_dim=9216,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
hidden_capping_value=30.0,
final_capping_value=50.0,
sliding_window_size=4096,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
use_dora=use_dora,
quantize_base=quantize_base,
)
qlora_gemma2_2b = partial(lora_gemma2_2b, quantize_base=True)
qlora_gemma2_2b.__doc__ = """
Builder for creating a Gemma2 model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_gemm2a_2b` for full API arguments.
"""
def gemma2_9b() -> TransformerDecoder:
"""
Builder for creating a Gemma2 9B model initialized w/ the default 9b parameter values
from: https://github.com/google/gemma_pytorch/blob/main/gemma/config.py
Returns:
TransformerDecoder: Instantiation of Gemma 9B model
"""
return gemma2(
vocab_size=256_000,
num_layers=42,
num_heads=16,
head_dim=256,
num_kv_heads=8,
embed_dim=3584,
intermediate_dim=14336,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
hidden_capping_value=30.0,
final_capping_value=50.0,
sliding_window_size=4096,
)
def lora_gemma2_9b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.0,
use_dora: bool = False,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Gemma 9B model with LoRA enabled.
The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_7b`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0
use_dora (bool): Decompose the LoRA weight into magnitude and direction, as
introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353).
quantize_base (bool): Whether to quantize base model weights
Returns:
TransformerDecoder: Instantiation of Gemma2 9B model with LoRA applied
"""
return lora_gemma2(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
vocab_size=256_000,
num_layers=42,
num_heads=16,
head_dim=256,
num_kv_heads=8,
embed_dim=3584,
intermediate_dim=14336,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
hidden_capping_value=30.0,
final_capping_value=50.0,
sliding_window_size=4096,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
use_dora=use_dora,
quantize_base=quantize_base,
)
qlora_gemma2_9b = partial(lora_gemma2_9b, quantize_base=True)
qlora_gemma2_9b.__doc__ = """
Builder for creating a Gemma model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_gemma2_9b` for full API arguments.
"""
def gemma2_27b() -> TransformerDecoder:
"""
Builder for creating a Gemma2 27B model initialized w/ the default 27b parameter values
from: https://github.com/google/gemma_pytorch/blob/main/gemma/config.py
Returns:
TransformerDecoder: Instantiation of Gemma2 27B model
"""
return gemma2(
vocab_size=256_000,
num_layers=46,
num_heads=32,
head_dim=128,
num_kv_heads=16,
embed_dim=4608,
intermediate_dim=36864,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
hidden_capping_value=30.0,
final_capping_value=50.0,
sliding_window_size=4096,
query_pre_attn_scalar=144,
)
def lora_gemma2_27b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.0,
use_dora: bool = False,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Gemma2 27B model with LoRA enabled.
The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_7b`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0
use_dora (bool): Decompose the LoRA weight into magnitude and direction, as
introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353).
quantize_base (bool): Whether to quantize base model weights
Returns:
TransformerDecoder: Instantiation of Gemma2 27B model with LoRA applied
"""
return lora_gemma2(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
vocab_size=256_000,
num_layers=46,
num_heads=32,
head_dim=128,
num_kv_heads=16,
embed_dim=4608,
intermediate_dim=36864,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
hidden_capping_value=30.0,
final_capping_value=50.0,
sliding_window_size=4096,
query_pre_attn_scalar=144,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
use_dora=use_dora,
quantize_base=quantize_base,
)
qlora_gemma2_27b = partial(lora_gemma2_27b, quantize_base=True)
qlora_gemma2_27b.__doc__ = """
Builder for creating a Gemma model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_gemma2_27b` for full API arguments.
"""