-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtest~~.py
69 lines (59 loc) · 1.46 KB
/
test~~.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# import torch
# import cv2
# import torch.nn as nn
#
# aa = cv2.imread('contents/image.png') / 255.
# aa = torch.FloatTensor(aa).permute(2, 0, 1).unsqueeze(0)
#
#
# class ss(nn.Module):
# def __init__(self):
# super().__init__()
# self.c1 = nn.Conv2d(3, 64, 3)
# self.c2 = nn.Conv2d(64, 32, 3)
# self.c3 = nn.Conv2d(32, 2, 3)
#
# def forward(self, x):
# self.x = x
# self.x1 = self.c1(self.x)
# self.x1.retain_grad()
#
# self.x2_d = self.x1.detach()
# self.x2_d.requires_grad = True
#
# self.x2 = self.c2(self.x2_d)
# self.x2.retain_grad()
#
# self.x3 = self.c3(self.x2)
#
# return self.x3
#
#
# net = ss()
# net.train()
#
# out = net(aa)
# loss = torch.sum((out - 1) ** 2)
#
# loss.backward()
# print(net.x1.grad)
import matplotlib.pyplot as plt
import numpy as np
import io
from PIL import Image
import cv2
# 使用plt进行画图
ss = Image.open('slark.png') # 读取图片像素为512X512
fig = plt.figure("Image") # 图像窗口名称
plt.imshow(ss)
buffer = io.BytesIO() # 获取输入输出流对象
print(buffer)
fig.canvas.print_png(buffer) # 将画布上的内容打印到输入输出流对象
data = buffer.getvalue() # 获取流的值
buffer.write(data) # 将数据写入buffer
img = np.array(Image.open(buffer))
print("转换的图片array的尺寸为:\n", img.shape)
cv2.imwrite("02.jpg", img)
buffer.close()