-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathlosses.py
96 lines (75 loc) · 3.27 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn as nn
import torch.nn.functional
import numpy as np
class Flow_Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, gen_flows, gt_flows):
return torch.mean(torch.abs(gen_flows - gt_flows))
class Intensity_Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, gen_frames, gt_frames):
return torch.mean(torch.abs((gen_frames - gt_frames) ** 2))
class Gradient_Loss(nn.Module):
def __init__(self, channels):
super().__init__()
pos = torch.from_numpy(np.identity(channels, dtype=np.float32))
neg = -1 * pos
# Note: when doing conv2d, the channel order is different from tensorflow, so do permutation.
self.filter_x = torch.stack((neg, pos)).unsqueeze(0).permute(3, 2, 0, 1).cuda()
self.filter_y = torch.stack((pos.unsqueeze(0), neg.unsqueeze(0))).permute(3, 2, 0, 1).cuda()
def forward(self, gen_frames, gt_frames):
# Do padding to match the result of the original tensorflow implementation
gen_frames_x = nn.functional.pad(gen_frames, [0, 1, 0, 0])
gen_frames_y = nn.functional.pad(gen_frames, [0, 0, 0, 1])
gt_frames_x = nn.functional.pad(gt_frames, [0, 1, 0, 0])
gt_frames_y = nn.functional.pad(gt_frames, [0, 0, 0, 1])
gen_dx = torch.abs(nn.functional.conv2d(gen_frames_x, self.filter_x))
gen_dy = torch.abs(nn.functional.conv2d(gen_frames_y, self.filter_y))
gt_dx = torch.abs(nn.functional.conv2d(gt_frames_x, self.filter_x))
gt_dy = torch.abs(nn.functional.conv2d(gt_frames_y, self.filter_y))
grad_diff_x = torch.abs(gt_dx - gen_dx)
grad_diff_y = torch.abs(gt_dy - gen_dy)
return torch.mean(grad_diff_x + grad_diff_y)
class Adversarial_Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, fake_outputs):
# TODO: compare with torch.nn.MSELoss ?
return torch.mean((fake_outputs - 1) ** 2 / 2)
class Discriminate_Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, real_outputs, fake_outputs):
return torch.mean((real_outputs - 1) ** 2 / 2) + torch.mean(fake_outputs ** 2 / 2)
# if __name__ == '__main__':
# # Debug Gradient_Loss, mainly on the padding issue.
# import numpy as np
#
# aa = torch.tensor([[1, 2, 3, 4, 2],
# [11, 12, 13, 14, 12],
# [1, 2, 3, 4, 2],
# [21, 22, 23, 24, 22],
# [1, 2, 3, 4, 2]], dtype=torch.float32)
#
# aa = aa.repeat(4, 3, 1, 1)
#
# pos = torch.from_numpy(np.identity(3, dtype=np.float32))
# neg = -1 * pos
# filter_x = torch.stack((neg, pos)).unsqueeze(0).permute(3, 2, 0, 1)
# filter_y = torch.stack((pos.unsqueeze(0), neg.unsqueeze(0))).permute(3, 2, 0, 1)
#
# gen_frames_x = nn.functional.pad(aa, [0, 1, 0, 0])
# gen_frames_y = nn.functional.pad(aa, [0, 0, 0, 1])
#
# gen_dx = torch.abs(nn.functional.conv2d(gen_frames_x, filter_x))
# gen_dy = torch.abs(nn.functional.conv2d(gen_frames_y, filter_y))
#
#
# print(aa)
# print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
# print(filter_y) # (2, 1, 3, 3)
# print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
# print(gen_dx)