-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathDataset.py
125 lines (95 loc) · 4 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import random
import torch
import numpy as np
import cv2
import glob
import os
import scipy.io as scio
from torch.utils.data import Dataset
def np_load_frame(filename, resize_h, resize_w):
img = cv2.imread(filename)
image_resized = cv2.resize(img, (resize_w, resize_h)).astype('float32')
image_resized = (image_resized / 127.5) - 1.0 # to -1 ~ 1
image_resized = np.transpose(image_resized, [2, 0, 1]) # to (C, W, H)
return image_resized
class train_dataset(Dataset):
"""
No data augmentation.
Normalized from [0, 255] to [-1, 1], the channels are BGR due to cv2 and liteFlownet.
"""
def __init__(self, cfg):
self.img_h = cfg.img_size[0]
self.img_w = cfg.img_size[1]
self.clip_length = 5
self.videos = []
self.all_seqs = []
for folder in sorted(glob.glob(f'{cfg.train_data}/*')):
all_imgs = glob.glob(f'{folder}/*.jpg')
all_imgs.sort()
self.videos.append(all_imgs)
random_seq = list(range(len(all_imgs) - 4))
random.shuffle(random_seq)
self.all_seqs.append(random_seq)
def __len__(self): # This decide the indice range of the PyTorch Dataloader.
return len(self.videos)
def __getitem__(self, indice): # Indice decide which video folder to be loaded.
one_folder = self.videos[indice]
video_clip = []
start = self.all_seqs[indice][-1] # Always use the last index in self.all_seqs.
for i in range(start, start + self.clip_length):
video_clip.append(np_load_frame(one_folder[i], self.img_h, self.img_w))
video_clip = np.array(video_clip).reshape((-1, self.img_h, self.img_w))
video_clip = torch.from_numpy(video_clip)
flow_str = f'{indice}_{start + 3}-{start + 4}'
return indice, video_clip, flow_str
class test_dataset:
def __init__(self, cfg, video_folder):
self.img_h = cfg.img_size[0]
self.img_w = cfg.img_size[1]
self.clip_length = 5
self.imgs = glob.glob(video_folder + '/*.jpg')
self.imgs.sort()
def __len__(self):
return len(self.imgs) - (self.clip_length - 1) # The first [input_num] frames are unpredictable.
def __getitem__(self, indice):
video_clips = []
for frame_id in range(indice, indice + self.clip_length):
video_clips.append(np_load_frame(self.imgs[frame_id], self.img_h, self.img_w))
video_clips = np.array(video_clips).reshape((-1, self.img_h, self.img_w))
return video_clips
class Label_loader:
def __init__(self, cfg, video_folders):
assert cfg.dataset in ('ped2', 'avenue', 'shanghaitech'), f'Did not find the related gt for \'{cfg.dataset}\'.'
self.cfg = cfg
self.name = cfg.dataset
self.frame_path = cfg.test_data
self.mat_path = f'{cfg.data_root + self.name}/{self.name}.mat'
self.video_folders = video_folders
def __call__(self):
if self.name == 'shanghaitech':
gt = self.load_shanghaitech()
else:
gt = self.load_ucsd_avenue()
return gt
def load_ucsd_avenue(self):
abnormal_events = scio.loadmat(self.mat_path, squeeze_me=True)['gt']
all_gt = []
for i in range(abnormal_events.shape[0]):
length = len(os.listdir(self.video_folders[i]))
sub_video_gt = np.zeros((length,), dtype=np.int8)
one_abnormal = abnormal_events[i]
if one_abnormal.ndim == 1:
one_abnormal = one_abnormal.reshape((one_abnormal.shape[0], -1))
for j in range(one_abnormal.shape[1]):
start = one_abnormal[0, j] - 1
end = one_abnormal[1, j]
sub_video_gt[start: end] = 1
all_gt.append(sub_video_gt)
return all_gt
def load_shanghaitech(self):
np_list = glob.glob(f'{self.cfg.data_root + self.name}/frame_masks/')
np_list.sort()
gt = []
for npy in np_list:
gt.append(np.load(npy))
return gt