forked from tkzic/audiograph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmbPitchShift.m
783 lines (568 loc) · 25.8 KB
/
smbPitchShift.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
// original source from http://www.dspdimension.com Stephan M. Bernsee
//
// has been modified to use FFT functions from accelerate framework (vdsp)
// tz 11/2011
/****************************************************************************
*
* NAME: smbPitchShift.cpp
* VERSION: 1.2
* HOME URL: http://www.dspdimension.com
* KNOWN BUGS: none
*
* SYNOPSIS: Routine for doing pitch shifting while maintaining
* duration using the Short Time Fourier Transform.
*
* DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
* (one octave down) and 2. (one octave up). A value of exactly 1 does not change
* the pitch. numSampsToProcess tells the routine how many samples in indata[0...
* numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ...
* numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
* data in-place). fftFrameSize defines the FFT frame size used for the
* processing. Typical values are 1024, 2048 and 4096. It may be any value <=
* MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
* oversampling factor which also determines the overlap between adjacent STFT
* frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
* recommended for best quality. sampleRate takes the sample rate for the signal
* in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
* indata[] should be in the range [-1.0, 1.0), which is also the output range
* for the data, make sure you scale the data accordingly (for 16bit signed integers
* you would have to divide (and multiply) by 32768).
*
* COPYRIGHT 1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
*
* The Wide Open License (WOL)
*
* Permission to use, copy, modify, distribute and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice and this license appear in all source copies.
* THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
* ANY KIND. See http://www.dspguru.com/wol.htm for more information.
*
*****************************************************************************/
#include <string.h>
#include <math.h>
#include <stdio.h>
#import <Accelerate/Accelerate.h>
// #define M_PI 3.14159265358979323846
// #define MAX_FRAME_LENGTH 8192
#define MAX_FRAME_LENGTH 4096 // tz
void smbFft(float *fftBuffer, long fftFrameSize, long sign);
double smbAtan2(double x, double y);
void printFFTInitSnapshot(long fftFrameSize2,long stepSize,double freqPerBin,double expct,
long inFifoLatency, long gRover);
void printFFTSnapshot(long i, long k, long qpd, long index,
double magn, double phase, double tmp,
double window, double real, double imag,
long gRover);
// -----------------------------------------------------------------------------------------------------------------
void smbPitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float *indata, float *outdata)
/*
Routine smbPitchShift(). See top of file for explanation
Purpose: doing pitch shifting while maintaining duration using the Short
Time Fourier Transform.
Author: (c)1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
*/
{
static float gInFIFO[MAX_FRAME_LENGTH];
static float gOutFIFO[MAX_FRAME_LENGTH];
static float gFFTworksp[2*MAX_FRAME_LENGTH];
static float gLastPhase[MAX_FRAME_LENGTH/2+1];
static float gSumPhase[MAX_FRAME_LENGTH/2+1];
static float gOutputAccum[2*MAX_FRAME_LENGTH];
static float gAnaFreq[MAX_FRAME_LENGTH];
static float gAnaMagn[MAX_FRAME_LENGTH];
static float gSynFreq[MAX_FRAME_LENGTH];
static float gSynMagn[MAX_FRAME_LENGTH];
static long gRover = FALSE, gInit = FALSE;
double magn, phase, tmp, window, real, imag;
double freqPerBin;
double expct; // expected phase difference tz
long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;
// float maxMag; // tz maximum magnitude for pitch detection display
// float displayFreq; // true pitch from last window analysis
/* set up some handy variables */
fftFrameSize2 = fftFrameSize/2;
stepSize = fftFrameSize/osamp;
freqPerBin = sampleRate/(double)fftFrameSize;
expct = 2.*M_PI*(double)stepSize/(double)fftFrameSize;
inFifoLatency = fftFrameSize-stepSize;
if (gRover == FALSE) gRover = inFifoLatency;
/* initialize our static arrays */
if (gInit == FALSE) {
NSLog(@"init static arrays");
printFFTInitSnapshot(fftFrameSize2,stepSize, freqPerBin, expct, inFifoLatency, gRover);
memset(gInFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
memset(gOutFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
memset(gFFTworksp, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
memset(gLastPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
memset(gSumPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
memset(gOutputAccum, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
memset(gAnaFreq, 0, MAX_FRAME_LENGTH*sizeof(float));
memset(gAnaMagn, 0, MAX_FRAME_LENGTH*sizeof(float));
gInit = true;
}
/* main processing loop */
for (i = 0; i < numSampsToProcess; i++){
// loading
// load the next section of data, one stepsize chunk at a time, starting at beginning of indata. the chunk gets loaded
// to a slot at the end of the gInFIFO, while at the same time, the chunk at the beginning of gOutFIFO gets loaded to into
// the outdata buffer one chunk at a time starting at the beginning.
//
// the very first time this pitchshifter is called, the gOutFIFO will be initialized with zero's so it looks like
// there will be some latency before the actual 'processed' samples begin to fill outdata.
//
/* As long as we have not yet collected enough data, just read in */
gInFIFO[gRover] = indata[i];
outdata[i] = gOutFIFO[gRover-inFifoLatency];
gRover++;
/* now we have enough data for processing */
if (gRover >= fftFrameSize) {
gRover = inFifoLatency; // gRover cycles up between (fftFrameSize - stepsize) and fftFrameSize
// eg., 896 - 1024 for an osamp of 8 and framesize of 1024
/* do windowing and re,im interleave */
// note that the first time this runs, the inFIFO will be mostly zeroes, but essentially, the fft runs on
// data that keeps getting slid to the left?
// the window is like a triangular hat that gets imposed over the sample buffer before its input to the fft
// the size of the hat is the fftsize and it scales off the data at beginning and end of the buffer
// i think that the vDSP_ctoz function will accomplish the interleaving and complex formatting stuff below
// we would still need to do the windowing, but maybe there's an apple function for that too
for (k = 0; k < fftFrameSize;k++) {
window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
gFFTworksp[2*k] = gInFIFO[k] * window; // real part is winowed amplitude of samples
gFFTworksp[2*k+1] = 0.; // imag part is set to 0
// NSLog(@"i: %d, k: %d, window: %f", i, k, window );
}
/* ***************** ANALYSIS ******************* */
/* do transform */
// lets try replacing this with accelerate functions
smbFft(gFFTworksp, fftFrameSize, -1);
/* this is the analysis step */
// this is looping through the fft output bins in the frequency domain
for (k = 0; k <= fftFrameSize2; k++) {
/* de-interlace FFT buffer */
real = gFFTworksp[2*k];
imag = gFFTworksp[2*k+1];
/* compute magnitude and phase */
magn = 2.*sqrt(real*real + imag*imag);
phase = atan2(imag,real);
/* compute phase difference */
// the gLastPhase[k] would be the phase from the kth frequency bin from the previous transform over this endlessly
// shifting data
tmp = phase - gLastPhase[k];
gLastPhase[k] = phase;
/* subtract expected phase difference */
tmp -= (double)k*expct;
/* map delta phase into +/- Pi interval */
qpd = tmp/M_PI;
if (qpd >= 0) qpd += qpd&1;
else qpd -= qpd&1;
tmp -= M_PI*(double)qpd;
/* get deviation from bin frequency from the +/- Pi interval */
tmp = osamp*tmp/(2.*M_PI);
/* compute the k-th partials' true frequency */
tmp = (double)k*freqPerBin + tmp*freqPerBin;
/* store magnitude and true frequency in analysis arrays */
gAnaMagn[k] = magn;
gAnaFreq[k] = tmp;
}
/*
// pitch detection ------------------
// find max magnitude for this pass
maxMag = 0.0;
displayFreq = 0.0;
for (k = 0; k <= fftFrameSize2; k++) {
if (gAnaMagn[k] > maxMag) {
maxMag = gAnaMagn[k];
displayFreq = gAnaFreq[k];
}
}
NSLog(@"pitch is: %f", displayFreq);
*/
/* ***************** PROCESSING ******************* */
/* this does the actual pitch shifting */
memset(gSynMagn, 0, fftFrameSize*sizeof(float)); // why do we zero out the buffer to frame size but
memset(gSynFreq, 0, fftFrameSize*sizeof(float)); // only actually seem to use half of frame size?
// so this code assigns the results of the analysis.
// it sets up pitch shifted bins using analyzed magnitude and analyzed freq * pitchShift
for (k = 0; k <= fftFrameSize2; k++) {
index = (long) (k * pitchShift);
// NSLog(@"i: %d, index: %d, k: %d, pitchShift: %f", i, index, k, pitchShift );
if (index <= fftFrameSize2) {
gSynMagn[index] += gAnaMagn[k];
gSynFreq[index] = gAnaFreq[k] * pitchShift;
}
}
/* ***************** SYNTHESIS ******************* */
/* this is the synthesis step */
for (k = 0; k <= fftFrameSize2; k++) {
/* get magnitude and true frequency from synthesis arrays */
magn = gSynMagn[k];
tmp = gSynFreq[k];
/* subtract bin mid frequency */
tmp -= (double)k*freqPerBin;
/* get bin deviation from freq deviation */
tmp /= freqPerBin;
/* take osamp into account */
tmp = 2.*M_PI*tmp/osamp;
/* add the overlap phase advance back in */
tmp += (double)k*expct;
/* accumulate delta phase to get bin phase */
gSumPhase[k] += tmp;
phase = gSumPhase[k];
/* get real and imag part and re-interleave */
gFFTworksp[2*k] = magn*cos(phase);
gFFTworksp[2*k+1] = magn*sin(phase);
}
/* zero negative frequencies */
for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) gFFTworksp[k] = 0.;
/* do inverse transform */
smbFft(gFFTworksp, fftFrameSize, 1);
/* do windowing and add to output accumulator */
for(k=0; k < fftFrameSize; k++) {
window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp);
}
for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k];
// why use two different methods to copy memory?
/* shift accumulator */
// this shifts in zeroes from beyond the bounds of framesize to fill the upper step size chunk
memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float));
/* move input FIFO */
for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize];
}
}
}
// -----------------------------------------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------------------------------------
void smb2PitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp,
float sampleRate, float *indata, float *outdata,
FFTSetup fftSetup, float *frequency)
/*
Routine smbPitchShift(). See top of file for explanation
Purpose: doing pitch shifting while maintaining duration using the Short
Time Fourier Transform.
Author: (c)1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
*/
{
static float gInFIFO[MAX_FRAME_LENGTH];
static float gOutFIFO[MAX_FRAME_LENGTH];
static float gFFTworksp[2*MAX_FRAME_LENGTH];
static float gLastPhase[MAX_FRAME_LENGTH/2+1];
static float gSumPhase[MAX_FRAME_LENGTH/2+1];
static float gOutputAccum[2*MAX_FRAME_LENGTH];
static float gAnaFreq[MAX_FRAME_LENGTH];
static float gAnaMagn[MAX_FRAME_LENGTH];
static float gSynFreq[MAX_FRAME_LENGTH];
static float gSynMagn[MAX_FRAME_LENGTH];
static COMPLEX_SPLIT A;
static long gRover = FALSE, gInit = FALSE;
double magn, phase, tmp, window, real, imag;
double freqPerBin;
double expct; // expected phase difference tz
long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;
int stride;
size_t bufferCapacity; // In samples
int log2n, n, nOver2; // params for fft setup
float maxMag; // tz maximum magnitude for pitch detection display
float displayFreq; // true pitch from last window analysis
int pitchCount = 0; // number of times pitch gets measured
float freqTotal = 0; // sum of all pitch measurements
/* set up some handy variables */
fftFrameSize2 = fftFrameSize/2;
stepSize = fftFrameSize/osamp;
freqPerBin = sampleRate/(double)fftFrameSize;
expct = 2.*M_PI*(double)stepSize/(double)fftFrameSize;
inFifoLatency = fftFrameSize-stepSize;
if (gRover == FALSE) gRover = inFifoLatency;
stride = 1;
log2n = log2f(fftFrameSize); // log base2 of max number of frames, eg., 10 for 1024
n = 1 << log2n; // actual max number of frames, eg., 1024 - what a silly way to compute it
nOver2 = fftFrameSize/2;
bufferCapacity = fftFrameSize;
// index = 0;
/* initialize our static arrays */
if (gInit == FALSE) {
NSLog(@"init static arrays");
printFFTInitSnapshot(fftFrameSize2,stepSize, freqPerBin, expct, inFifoLatency, gRover);
memset(gInFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
memset(gOutFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
memset(gFFTworksp, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
memset(gLastPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
memset(gSumPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
memset(gOutputAccum, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
memset(gAnaFreq, 0, MAX_FRAME_LENGTH*sizeof(float));
memset(gAnaMagn, 0, MAX_FRAME_LENGTH*sizeof(float));
// split complex number buffer
A.realp = (float *)malloc(nOver2 * sizeof(float)); //
A.imagp = (float *)malloc(nOver2 * sizeof(float)); // why is it set to half the frame size
gInit = true;
}
// NSLog(@"before load");
/* main processing loop */
for (i = 0; i < numSampsToProcess; i++){
// loading
// load the next section of data, one stepsize chunk at a time, starting at beginning of indata. the chunk gets loaded
// to a slot at the end of the gInFIFO, while at the same time, the chunk at the beginning of gOutFIFO gets loaded to into
// the outdata buffer one chunk at a time starting at the beginning.
//
// the very first time this pitchshifter is called, the gOutFIFO will be initialized with zero's so it looks like
// there will be some latency before the actual 'processed' samples begin to fill outdata.
//
/* As long as we have not yet collected enough data, just read in */
gInFIFO[gRover] = indata[i];
outdata[i] = gOutFIFO[gRover-inFifoLatency];
gRover++;
/* now we have enough data for processing */
if (gRover >= fftFrameSize) {
gRover = inFifoLatency; // gRover cycles up between (fftFrameSize - stepsize) and fftFrameSize
// eg., 896 - 1024 for an osamp of 8 and framesize of 1024
/* do windowing and re,im interleave */
// note that the first time this runs, the inFIFO will be mostly zeroes, but essentially, the fft runs on
// data that keeps getting slid to the left?
// the window is like a triangular hat that gets imposed over the sample buffer before its input to the fft
// the size of the hat is the fftsize and it scales off the data at beginning and end of the buffer
// i think that the vDSP_ctoz function will accomplish the interleaving and complex formatting stuff below
// we would still need to do the windowing, but maybe there's an apple function for that too
// for (k = 0; k < fftFrameSize;k++) {
// window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
// gFFTworksp[2*k] = gInFIFO[k] * window; // real part is winowed amplitude of samples
// gFFTworksp[2*k+1] = 0.; // imag part is set to 0
// // NSLog(@"i: %d, k: %d, window: %f", i, k, window );
// }
for (k = 0; k < fftFrameSize;k++) {
window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
gFFTworksp[k] = gInFIFO[k] * window; // real part is winowed amplitude of samples
// gFFTworksp[2*k+1] = 0.; // imag part is set to 0
// NSLog(@"i: %d, k: %d, window: %f", i, k, window );
}
// cast to complex interleaved then convert to split complex vector
vDSP_ctoz((COMPLEX*)gFFTworksp, 2, &A, 1, nOver2);
// Carry out a Forward FFT transform.
// NSLog(@"before transform");
vDSP_fft_zrip(fftSetup, &A, stride, log2n, FFT_FORWARD);
// NSLog(@"after transform");
// convert from split complex to complex interleaved for analysis
vDSP_ztoc(&A, 1, (COMPLEX *)gFFTworksp, 2, nOver2);
/* ***************** ANALYSIS ******************* */
/* do transform */
// lets try replacing this with accelerate functions
// smbFft(gFFTworksp, fftFrameSize, -1);
/* this is the analysis step */
// this is looping through the fft output bins in the frequency domain
for (k = 0; k <= fftFrameSize2; k++) {
/* de-interlace FFT buffer */
real = gFFTworksp[2*k];
imag = gFFTworksp[2*k+1];
/* compute magnitude and phase */
magn = 2.*sqrt(real*real + imag*imag);
phase = atan2(imag,real);
/* compute phase difference */
// the gLastPhase[k] would be the phase from the kth frequency bin from the previous transform over this endlessly
// shifting data
tmp = phase - gLastPhase[k];
gLastPhase[k] = phase;
/* subtract expected phase difference */
tmp -= (double)k*expct;
/* map delta phase into +/- Pi interval */
qpd = tmp/M_PI;
if (qpd >= 0) qpd += qpd&1;
else qpd -= qpd&1;
tmp -= M_PI*(double)qpd;
/* get deviation from bin frequency from the +/- Pi interval */
tmp = osamp*tmp/(2.*M_PI);
/* compute the k-th partials' true frequency */
tmp = (double)k*freqPerBin + tmp*freqPerBin;
/* store magnitude and true frequency in analysis arrays */
gAnaMagn[k] = magn;
gAnaFreq[k] = tmp;
}
// pitch detection ------------------
// find max magnitude for this pass
maxMag = 0.0;
displayFreq = 0.0;
for (k = 0; k <= fftFrameSize2; k++) {
if (gAnaMagn[k] > maxMag) {
maxMag = gAnaMagn[k];
displayFreq = gAnaFreq[k];
}
}
freqTotal += displayFreq;
pitchCount++;
/* ***************** PROCESSING ******************* */
/* this does the actual pitch shifting */
memset(gSynMagn, 0, fftFrameSize*sizeof(float)); // why do we zero out the buffer to frame size but
memset(gSynFreq, 0, fftFrameSize*sizeof(float)); // only actually seem to use half of frame size?
// so this code assigns the results of the analysis.
// it sets up pitch shifted bins using analyzed magnitude and analyzed freq * pitchShift
for (k = 0; k <= fftFrameSize2; k++) {
index = (long) (k * pitchShift);
// NSLog(@"i: %d, index: %d, k: %d, pitchShift: %f", i, index, k, pitchShift );
if (index <= fftFrameSize2) {
gSynMagn[index] += gAnaMagn[k];
gSynFreq[index] = gAnaFreq[k] * pitchShift;
}
}
/* ***************** SYNTHESIS ******************* */
/* this is the synthesis step */
for (k = 0; k <= fftFrameSize2; k++) {
/* get magnitude and true frequency from synthesis arrays */
magn = gSynMagn[k];
tmp = gSynFreq[k];
/* subtract bin mid frequency */
tmp -= (double)k*freqPerBin;
/* get bin deviation from freq deviation */
tmp /= freqPerBin;
/* take osamp into account */
tmp = 2.*M_PI*tmp/osamp;
/* add the overlap phase advance back in */
tmp += (double)k*expct;
/* accumulate delta phase to get bin phase */
gSumPhase[k] += tmp;
phase = gSumPhase[k];
/* get real and imag part and re-interleave */
gFFTworksp[2*k] = magn*cos(phase);
gFFTworksp[2*k+1] = magn*sin(phase);
}
/* zero negative frequencies */
for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) gFFTworksp[k] = 0.;
// convert from complex interleaved to split complex vector
vDSP_ctoz((COMPLEX*)gFFTworksp, 2, &A, 1, nOver2);
// Carry out an inverse FFT transform.
vDSP_fft_zrip(fftSetup, &A, stride, log2n, FFT_INVERSE );
// scale it
// the suggested scale factor makes the sound barely audible
// so we should probably experiment with various things
// I have a hunch that the stfft needs a different kind of scaling
// float scale = (float) 1.0 / (2 * n);
// float scale = (float) 1.0 / (osamp);
float scale = .25;
vDSP_vsmul(A.realp, 1, &scale, A.realp, 1, nOver2 );
vDSP_vsmul(A.imagp, 1, &scale, A.imagp, 1, nOver2 );
// covert from split complex to complex interleaved
vDSP_ztoc(&A, 1, (COMPLEX *) gFFTworksp, 2, nOver2);
/* do inverse transform */
// smbFft(gFFTworksp, fftFrameSize, 1);
/* do windowing and add to output accumulator */
/*
for(k=0; k < fftFrameSize; k++) {
window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp);
}
*/
/* do windowing and add to output accumulator */
for(k=0; k < fftFrameSize; k++) {
window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
gOutputAccum[k] += 2.*window*gFFTworksp[k]/(fftFrameSize2*osamp);
}
for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k];
// why use two different methods to copy memory?
/* shift accumulator */
// this shifts in zeroes from beyond the bounds of framesize to fill the upper step size chunk
memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float));
/* move input FIFO */
for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize];
}
}
// NSLog(@"pitchCount: %d", pitchCount);
*frequency = (float) (freqTotal / pitchCount);
// NSLog(@"pitch is: %f", *frequency );
}
// -----------------------------------------------------------------------------------------------------------------
void smbFft(float *fftBuffer, long fftFrameSize, long sign)
/*
FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse)
Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the
time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes
and returns the cosine and sine parts in an interleaved manner, ie.
fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize
must be a power of 2. It expects a complex input signal (see footnote 2),
ie. when working with 'common' audio signals our input signal has to be
passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform
of the frequencies of interest is in fftBuffer[0...fftFrameSize].
*/
{
float wr, wi, arg, *p1, *p2, temp;
float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
long i, bitm, j, le, le2, k;
for (i = 2; i < 2*fftFrameSize-2; i += 2) {
for (bitm = 2, j = 0; bitm < 2*fftFrameSize; bitm <<= 1) {
if (i & bitm) j++;
j <<= 1;
}
if (i < j) {
p1 = fftBuffer+i; p2 = fftBuffer+j;
temp = *p1; *(p1++) = *p2;
*(p2++) = temp; temp = *p1;
*p1 = *p2; *p2 = temp;
}
}
for (k = 0, le = 2; k < (long)(log(fftFrameSize)/log(2.)+.5); k++) {
le <<= 1;
le2 = le>>1;
ur = 1.0;
ui = 0.0;
arg = M_PI / (le2>>1);
wr = cos(arg);
wi = sign*sin(arg);
for (j = 0; j < le2; j += 2) {
p1r = fftBuffer+j; p1i = p1r+1;
p2r = p1r+le2; p2i = p2r+1;
for (i = j; i < 2*fftFrameSize; i += le) {
tr = *p2r * ur - *p2i * ui;
ti = *p2r * ui + *p2i * ur;
*p2r = *p1r - tr; *p2i = *p1i - ti;
*p1r += tr; *p1i += ti;
p1r += le; p1i += le;
p2r += le; p2i += le;
}
tr = ur*wr - ui*wi;
ui = ur*wi + ui*wr;
ur = tr;
}
}
}
// -----------------------------------------------------------------------------------------------------------------
/*
12/12/02, smb
PLEASE NOTE:
There have been some reports on domain errors when the atan2() function was used
as in the above code. Usually, a domain error should not interrupt the program flow
(maybe except in Debug mode) but rather be handled "silently" and a global variable
should be set according to this error. However, on some occasions people ran into
this kind of scenario, so a replacement atan2() function is provided here.
If you are experiencing domain errors and your program stops, simply replace all
instances of atan2() with calls to the smbAtan2() function below.
*/
double smbAtan2(double x, double y)
{
double signx;
if (x > 0.) signx = 1.;
else signx = -1.;
if (x == 0.) return 0.;
if (y == 0.) return signx * M_PI / 2.;
return atan2(x, y);
}
// tz utility functions
void printFFTInitSnapshot(long fftFrameSize2,long stepSize,double freqPerBin,double expct,
long inFifoLatency, long gRover) {
NSLog(@"fft init snapshot");
NSLog(@"fftFrameSize2: %ld", fftFrameSize2);
NSLog(@"stepSize: %ld", stepSize);
NSLog(@"freqPerBin: %f", freqPerBin);
NSLog(@"expct: %f", expct);
NSLog(@"inFifoLatency: %ld", inFifoLatency);
NSLog(@"gRover: %ld", gRover);
}
void printFFTSnapshot(long i, long k, long qpd, long index,
double magn, double phase, double tmp,
double window, double real, double imag,
long gRover){
NSLog(@"fft snapshot");
NSLog(@"i: %ld, k: %ld, qpd: %ld, index: %ld", i,k,qpd,index);
NSLog(@"magn: %f, phase: %f, tmp: %f", magn, phase, tmp );
NSLog(@"window: %f, real: %f, imag: %f ", window, real, imag);
NSLog(@"gRover %ld", gRover);
}
// -----------------------------------------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------------------------------------