-
Notifications
You must be signed in to change notification settings - Fork 0
/
sieveoferatosthenes.py
72 lines (52 loc) · 1.85 KB
/
sieveoferatosthenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) The University of Edinburgh 2014-2015
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dispel4py.core import GenericPE
from dispel4py.base import IterativePE
class MyFirstPE(GenericPE):
def __init__(self):
GenericPE.__init__(self)
self._add_input('input')
self._add_output('prime')
self._add_output('output')
self.divisor = None
def _process(self, inputs):
number = inputs['input']
if not self.divisor:
self.divisor = number
return {'prime': number}
if not number % self.divisor == 0:
return {'output': number}
from dispel4py.base import ProducerPE
class NumberProducer(ProducerPE):
def __init__(self, limit):
ProducerPE.__init__(self)
self.limit = limit
def _process(self):
for i in range(2, self.limit):
self.write(ProducerPE.OUTPUT_NAME, i)
class PrimeCollector(IterativePE):
def __init__(self):
IterativePE.__init__(self)
def _process(self, data):
return data
from dispel4py.workflow_graph import WorkflowGraph
graph = WorkflowGraph()
producer = NumberProducer(1000)
primes = PrimeCollector()
prev = producer
for i in range(2, 200):
divide = MyFirstPE()
graph.connect(prev, 'output', divide, 'input')
prev = divide
graph.connect(divide, 'prime', primes, 'input')