forked from Superzchen/iLearnPlus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
iLearnPlusBasic.py
3132 lines (2998 loc) · 185 KB
/
iLearnPlusBasic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# _*_ coding: utf-8 _*_
import sys, os, re
from PyQt5.QtWidgets import (QApplication, QWidget, QPushButton, QFileDialog, QLabel, QHBoxLayout, QGroupBox, QTextEdit,
QVBoxLayout, QLineEdit, QTreeWidget, QTreeWidgetItem, QSplitter, QTableWidget, QTabWidget,
QTableWidgetItem, QInputDialog, QMessageBox, QFormLayout, QGridLayout, QRadioButton,
QHeaderView, QAbstractItemView, QLabel)
from PyQt5.QtGui import QIcon, QFont, QMovie
from PyQt5.QtCore import Qt, pyqtSignal
from util import (FileProcessing, DataAnalysis, InputDialog, CheckAccPseParameter, MachineLearning, TableWidget,
PlotWidgets)
import numpy as np
import pandas as pd
import threading
import qdarkstyle
import sip
import joblib
import torch
import copy
class ILearnPlusBasic(QTabWidget):
desc_signal = pyqtSignal()
clust_signal = pyqtSignal()
selection_signal = pyqtSignal()
ml_signal = pyqtSignal()
close_signal = pyqtSignal(str)
def __init__(self):
super(ILearnPlusBasic, self).__init__()
# signal
self.desc_signal.connect(self.set_table_content)
self.clust_signal.connect(self.display_data_analysis)
self.selection_signal.connect(self.display_selection_data)
self.ml_signal.connect(self.display_ml_data)
# graph setting
# pg.setConfigOption('background', '#FFFFFF')
# status bar
self.gif = QMovie('images/progress_bar.gif')
# default variable (start with "desc")
""" Descriptor variable """
self.desc_fasta_file = '' # fasta sequences file
self.desc_seq_type = '' # sequences type: DNA, RNA or Protein
self.desc_selected_descriptor = '' # descriptor
self.descriptor = None # coding
self.desc_running_status = False
self.desc_default_para = { # default parameter for descriptors
'sliding_window': 5,
'kspace': 3,
'props': ['CIDH920105', 'BHAR880101', 'CHAM820101', 'CHAM820102', 'CHOC760101', 'BIGC670101', 'CHAM810101',
'DAYM780201'],
'nlag': 3,
'weight': 0.05,
'lambdaValue': 3,
'PseKRAAC_model': 'g-gap',
'g-gap': 2,
'k-tuple': 2,
'RAAC_clust': 1,
'aaindex': 'ANDN920101;ARGP820101;ARGP820102;ARGP820103;BEGF750101;BEGF750102;BEGF750103;BHAR880101',
'kmer': 3,
'mismatch': 1,
'delta': 0,
'Di-DNA-Phychem': 'Twist;Tilt;Roll;Shift;Slide;Rise',
'Tri-DNA-Phychem': 'Dnase I;Bendability (DNAse)',
'Di-RNA-Phychem': 'Rise (RNA);Roll (RNA);Shift (RNA);Slide (RNA);Tilt (RNA);Twist (RNA)',
'distance': 0,
'cp': 'cp(20)',
}
""" Cluster Variable """
self.cluster_file = ''
self.clust_data = None
self.clust_analysis_type = ''
self.clust_selected_algorithm = ''
self.clust_default_para = {
'nclusters': 2,
'n_components': 2,
'expand_factor': 2,
'inflate_factor': 2.0,
'multiply_factor': 2.0
}
self.clust_status = False
self.clust_symbol = {0: 'o', 1: 's', 2: 't', 3: '+', 4: 'p', 5: 't2', 6: 'h', 7: 't3', 8: 'star', 9: 't1',
10: 't2'}
""" Feature Selection Variable """
self.selection_file = ''
self.selection_data = None
self.selection_analysis_type = ''
self.selection_selected_algorithm = ''
self.selection_running_status = False
self.selection_default_para = {
'feature_number': 5,
}
""" Machine Learning Variable """
self.MLData = None
self.MLAlgorithm = None
self.fold_num = 5
self.data_index = {
'Training_data': None,
'Testing_data': None,
'Training_score': None,
'Testing_score': None,
'Metrics': None,
'ROC': None,
'PRC': None,
'Model': None,
}
self.current_data_index = 0
self.ml_running_status = False
self.ml_defatult_para = {
'FOLD': 5,
'cpu': 1,
'auto': False,
'n_trees': 100,
'tree_range': (100, 1000, 100),
'kernel': 'rbf',
'penality': 1.0,
'gamma': 'auto',
'penalityRange': (1.0, 15.0),
'gammaRange': (-10.0, 5.0),
'layer': '32;32',
'activation': 'relu',
'optimizer': 'adam',
'topKValue': 3,
'boosting_type': 'gbdt',
'num_leaves': 31,
'max_depth': -1,
'learning_rate': 0.01,
'leaves_range': (20, 100, 10),
'depth_range': (15, 55, 10),
'rate_range': (0.01, 0.15, 0.02),
'booster': 'gbtree',
'n_estimator': 100,
'colsample_bytree': 0.8,
'input_channel': 1,
'input_length': 100,
'output_channel': 64,
'padding': 2,
'kernel_size': 5,
'dropout': 0.5,
'epochs': 1000,
'early_stopping': 100,
'batch_size': 64,
'fc_size': 64,
'rnn_hidden_size': 32,
'rnn_hidden_layers': 1,
'rnn_bidirection': False,
'mlp_input_dim': None,
}
# initialize UI
self.initUI()
def initUI(self):
self.setWindowTitle('iLearnPlus Basic')
self.resize(800, 600)
self.setWindowState(Qt.WindowMaximized)
self.setWindowIcon(QIcon('images/logo.ico'))
""" four QWidget """
self.tab_descriptor = QWidget()
self.tab_cluster = QWidget()
self.tab_selection = QWidget()
self.tab_machine = QWidget()
self.addTab(self.tab_descriptor, " Descriptor ")
self.addTab(self.tab_cluster, " Cluster / Dimensionality Reduction ")
self.addTab(self.tab_selection, ' Feature Normalization/Selection ')
self.addTab(self.tab_machine, ' Machine Learning ')
""" Initialize tab """
self.setup_tab_descriptor()
self.setup_tab_cluster()
self.setup_tab_selection()
self.setup_tab_machinelearning()
""" setup tab UI """
def setup_tab_descriptor(self):
# choose file -> topGroupBox
topGroupBox = QGroupBox('Choose file in special FASTA format', self)
topGroupBox.setFont(QFont('Arial', 10))
topGroupBoxLayout = QHBoxLayout()
self.desc_file_lineEdit = QLineEdit()
self.desc_file_lineEdit.setFont(QFont('Arial', 8))
self.desc_file_button = QPushButton('Open')
self.desc_file_button.clicked.connect(self.get_fasta_file_name)
self.desc_file_button.setFont(QFont('Arial', 10))
topGroupBoxLayout.addWidget(self.desc_file_lineEdit)
topGroupBoxLayout.addWidget(self.desc_file_button)
topGroupBox.setLayout(topGroupBoxLayout)
# encoding list -> treeGroupBox
treeGroupBox = QGroupBox('Descriptors', self)
treeGroupBox.setFont(QFont('Arial', 10))
treeLayout = QVBoxLayout()
self.desc_treeWidget = QTreeWidget()
self.desc_treeWidget.setColumnCount(2)
self.desc_treeWidget.setMinimumWidth(300)
self.desc_treeWidget.setColumnWidth(0, 150)
self.desc_treeWidget.setFont(QFont('Arial', 8))
self.desc_treeWidget.setHeaderLabels(['Codings', 'Definition'])
self.desc_treeWidget.clicked.connect(self.desc_tree_clicked)
# Protein descriptors
self.Protein = QTreeWidgetItem(self.desc_treeWidget)
self.Protein.setExpanded(True) # set node expanded
self.Protein.setText(0, 'Protein')
self.AAC = QTreeWidgetItem(self.Protein)
self.AAC.setText(0, 'AAC')
self.AAC.setText(1, 'Amino Acids Content')
self.AAC.setToolTip(1, 'The AAC encoding calculates the frequency of each amino acid\n type in a protein or peptide sequence.')
EAAC = QTreeWidgetItem(self.Protein)
EAAC.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
EAAC.setText(0, 'EAAC')
EAAC.setText(1, 'Enhanced Amino Acids Content')
EAAC.setToolTip(1, 'The EAAC feature calculates the AAC based on the sequence window\n of fixed length that continuously slides from the N- to\n C-terminus of each peptide and can be usually applied to\n encode the peptides with an equal length.')
CKSAAP = QTreeWidgetItem(self.Protein)
CKSAAP.setText(0, 'CKSAAP')
CKSAAP.setText(1, 'Composition of k-spaced Amino Acid Pairs')
CKSAAP.setToolTip(1, 'The CKSAAP feature encoding calculates the frequency of amino\n acid pairs separated by any k residues.')
self.DPC = QTreeWidgetItem(self.Protein)
self.DPC.setText(0, 'DPC')
self.DPC.setText(1, 'Di-Peptide Composition')
self.DPC.setToolTip(1, 'The DPC descriptor calculate the frequency of di-peptides.')
DDE = QTreeWidgetItem(self.Protein)
DDE.setText(0, 'DDE')
DDE.setText(1, 'Dipeptide Deviation from Expected Mean')
DDE.setToolTip(1, 'The Dipeptide Deviation from Expected Mean feature vector is\n constructed by computing three parameters, i.e. dipeptide composition (Dc),\n theoretical mean (Tm), and theoretical variance (Tv).')
self.TPC = QTreeWidgetItem(self.Protein)
self.TPC.setText(0, 'TPC')
self.TPC.setText(1, 'Tripeptide Composition')
self.TPC.setToolTip(1, 'The TPC descriptor calculate the frequency of tri-peptides.')
binary = QTreeWidgetItem(self.Protein)
binary.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 20-dimensional binary vector.')
binary.setText(0, 'binary')
binary.setText(1, 'binary (20 bit)')
self.binary_6bit = QTreeWidgetItem(self.Protein)
self.binary_6bit.setText(0, 'binary_6bit')
self.binary_6bit.setText(1, 'binary (6 bit)')
self.binary_6bit.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 6-dimensional binary vector.')
self.binary_5bit_type1 = QTreeWidgetItem(self.Protein)
self.binary_5bit_type1.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_5bit_type1.setText(0, 'binary_5bit type 1')
self.binary_5bit_type1.setText(1, 'binary (5 bit type 1)')
self.binary_5bit_type1.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 5-dimensional binary vector.')
self.binary_5bit_type2 = QTreeWidgetItem(self.Protein)
self.binary_5bit_type2.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_5bit_type2.setText(0, 'binary_5bit type 2')
self.binary_5bit_type2.setText(1, 'binary (5 bit type 2)')
self.binary_5bit_type2.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 5-dimensional binary vector.')
self.binary_3bit_type1 = QTreeWidgetItem(self.Protein)
self.binary_3bit_type1.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_3bit_type1.setText(0, 'binary_3bit type 1')
self.binary_3bit_type1.setText(1, 'binary (3 bit type 1 - Hydrophobicity)')
self.binary_3bit_type1.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 3-dimensional binary vector.')
self.binary_3bit_type2 = QTreeWidgetItem(self.Protein)
self.binary_3bit_type2.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_3bit_type2.setText(0, 'binary_3bit type 2')
self.binary_3bit_type2.setText(1, 'binary (3 bit type 2 - Normalized Van der Waals volume)')
self.binary_3bit_type2.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 3-dimensional binary vector.')
self.binary_3bit_type3 = QTreeWidgetItem(self.Protein)
self.binary_3bit_type3.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_3bit_type3.setText(0, 'binary_3bit type 3')
self.binary_3bit_type3.setText(1, 'binary (3 bit type 3 - Polarity)')
self.binary_3bit_type3.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 3-dimensional binary vector.')
self.binary_3bit_type4 = QTreeWidgetItem(self.Protein)
self.binary_3bit_type4.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_3bit_type4.setText(0, 'binary_3bit type 4')
self.binary_3bit_type4.setText(1, 'binary (3 bit type 4 - Polarizibility)')
self.binary_3bit_type4.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 3-dimensional binary vector.')
self.binary_3bit_type5 = QTreeWidgetItem(self.Protein)
self.binary_3bit_type5.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_3bit_type5.setText(0, 'binary_3bit type 5')
self.binary_3bit_type5.setText(1, 'binary (3 bit type 5 - Charge)')
self.binary_3bit_type5.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 3-dimensional binary vector.')
self.binary_3bit_type6 = QTreeWidgetItem(self.Protein)
self.binary_3bit_type6.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_3bit_type6.setText(0, 'binary_3bit type 6')
self.binary_3bit_type6.setText(1, 'binary (3 bit type 6 - Secondary structures)')
self.binary_3bit_type6.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 3-dimensional binary vector.')
self.binary_3bit_type7 = QTreeWidgetItem(self.Protein)
self.binary_3bit_type7.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
self.binary_3bit_type7.setText(0, 'binary_3bit type 7')
self.binary_3bit_type7.setText(1, 'binary (3 bit type 7 - Solvent accessibility)')
self.binary_3bit_type7.setToolTip(1, 'In the binary encoding, each amino acid is represented by a 3-dimensional binary vector.')
AESNN3 = QTreeWidgetItem(self.Protein)
AESNN3.setText(0, 'AESNN3')
AESNN3.setText(1, 'Learn from alignments')
AESNN3.setToolTip(1, 'For this descriptor, each amino acid type is described using\n a three-dimensional vector. Values are taken from the three\n hidden units from the neural network trained on structure alignments.')
self.GAAC = QTreeWidgetItem(self.Protein)
self.GAAC.setText(0, 'GAAC')
self.GAAC.setText(1, 'Grouped Amino Acid Composition')
self.GAAC.setToolTip(1, 'In the GAAC encoding, the 20 amino acid types are further categorized\n into five classes according to their physicochemical properties. It calculate the frequency for each class.')
EGAAC = QTreeWidgetItem(self.Protein)
EGAAC.setToolTip(1, 'The descriptor need fasta sequences with equal length.')
EGAAC.setText(0, 'EGAAC')
EGAAC.setText(1, 'Enhanced Grouped Amino Acid Composition')
EGAAC.setToolTip(1, 'It calculates GAAC in windows of fixed length continuously sliding\n from the N- to C-terminal of each peptide and is usually applied\n to peptides with an equal length.')
CKSAAGP = QTreeWidgetItem(self.Protein)
CKSAAGP.setText(0, 'CKSAAGP')
CKSAAGP.setText(1, 'Composition of k-Spaced Amino Acid Group Pairs')
CKSAAGP.setToolTip(1, ' It calculates the frequency of amino acid group pairs separated by any k residues.')
self.GDPC = QTreeWidgetItem(self.Protein)
self.GDPC.setText(0, 'GDPC')
self.GDPC.setText(1, 'Grouped Di-Peptide Composition')
self.GDPC.setToolTip(1, 'GDPC calculate the frequency of amino acid group pairs.')
self.GTPC = QTreeWidgetItem(self.Protein)
self.GTPC.setText(0, 'GTPC')
self.GTPC.setText(1, 'Grouped Tri-Peptide Composition')
self.GTPC.setToolTip(1, 'GTPC calculate the frequency of grouped tri-peptides.')
AAIndex = QTreeWidgetItem(self.Protein)
AAIndex.setText(0, 'AAIndex')
AAIndex.setText(1, 'AAIndex')
AAIndex.setToolTip(1, 'The amino acids is respresented by the physicochemical property value in AAindex database.')
ZScale = QTreeWidgetItem(self.Protein)
ZScale.setText(0, 'ZScale')
ZScale.setText(1, 'ZScale')
ZScale.setToolTip(1, 'Each amino acid is characterized by five physicochemical descriptor variables, which were developed by Sandberg et al. in 1998.')
BLOSUM62 = QTreeWidgetItem(self.Protein)
BLOSUM62.setText(0, 'BLOSUM62')
BLOSUM62.setText(1, 'BLOSUM62')
BLOSUM62.setToolTip(1, 'In this descriptor, the BLOSUM62 matrix is employed to represent the\n protein primary sequence information as the basic feature set.')
NMBroto = QTreeWidgetItem(self.Protein)
NMBroto.setText(0, 'NMBroto')
NMBroto.setText(1, 'Normalized Moreau-Broto Autocorrelation')
NMBroto.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
Moran = QTreeWidgetItem(self.Protein)
Moran.setText(0, 'Moran')
Moran.setText(1, 'Moran correlation')
Moran.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
Geary = QTreeWidgetItem(self.Protein)
Geary.setText(0, 'Geary')
Geary.setText(1, 'Geary correlation')
Geary.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
CTDC = QTreeWidgetItem(self.Protein)
CTDC.setText(0, 'CTDC')
CTDC.setText(1, 'Composition')
CTDC.setToolTip(1, 'The Composition, Transition and Distribution (CTD) features represent\n the amino acid distribution patterns of a specific structural\n or physicochemical property in a protein or peptide sequence.')
CTDT = QTreeWidgetItem(self.Protein)
CTDT.setText(0, 'CTDT')
CTDT.setText(1, 'Transition')
CTDT.setToolTip(1, 'The Composition, Transition and Distribution (CTD) features represent\n the amino acid distribution patterns of a specific structural\n or physicochemical property in a protein or peptide sequence.')
CTDD = QTreeWidgetItem(self.Protein)
CTDD.setText(0, 'CTDD')
CTDD.setToolTip(1, 'The Composition, Transition and Distribution (CTD) features represent\n the amino acid distribution patterns of a specific structural\n or physicochemical property in a protein or peptide sequence.')
CTDD.setText(1, 'Distribution')
CTriad = QTreeWidgetItem(self.Protein)
CTriad.setText(0, 'CTriad')
CTriad.setText(1, 'Conjoint Triad')
CTriad.setToolTip(1, 'The CTriad considers the properties of one amino acid and its\n vicinal amino acids by regarding any three continuous amino\n acids as a single unit.')
self.KSCTriad = QTreeWidgetItem(self.Protein)
self.KSCTriad.setText(0, 'KSCTriad')
self.KSCTriad.setText(1, 'k-Spaced Conjoint Triad')
self.KSCTriad.setToolTip(1, 'The KSCTriad descriptor is based on the Conjoint CTriad descriptor,\n which not only calculates the numbers of three continuous amino acid units,\n but also considers the continuous amino acid units that are separated by any k residues.')
SOCNumber = QTreeWidgetItem(self.Protein)
SOCNumber.setText(0, 'SOCNumber')
SOCNumber.setText(1, 'Sequence-Order-Coupling Number')
SOCNumber.setToolTip(1, 'The SOCNumber descriptor consider the sequence order coupling number information.')
QSOrder = QTreeWidgetItem(self.Protein)
QSOrder.setText(0, 'QSOrder')
QSOrder.setText(1, 'Quasi-sequence-order')
QSOrder.setToolTip(1, 'Qsorder descriptor coonsider the quasi sequence order information.')
PAAC = QTreeWidgetItem(self.Protein)
PAAC.setText(0, 'PAAC')
PAAC.setText(1, 'Pseudo-Amino Acid Composition')
PAAC.setToolTip(1, 'The PAAC descriptor is a combination of a set of discrete sequence correlation\n factors and the 20 components of the conventional amino acid composition.')
APAAC = QTreeWidgetItem(self.Protein)
APAAC.setText(0, 'APAAC')
APAAC.setText(1, 'Amphiphilic Pseudo-Amino Acid Composition')
APAAC.setToolTip(1, 'The descriptor contains 20 + 2 lambda discrete numbers:\n the first 20 numbers are the components of the conventional amino acid composition;\n the next 2 lambda numbers are a set of correlation factors that reflect different\n hydrophobicity and hydrophilicity distribution patterns along a protein chain.')
OPF_10bit = QTreeWidgetItem(self.Protein)
OPF_10bit.setText(0, 'OPF_10bit')
OPF_10bit.setText(1, 'Overlapping Property Features (10 bit)')
OPF_10bit.setToolTip(1, 'For this descriptor, the amino acids are classified into 10 groups based their physicochemical properties.')
self.OPF_7bit_type1 = QTreeWidgetItem(self.Protein)
self.OPF_7bit_type1.setText(0, 'OPF_7bit type 1')
self.OPF_7bit_type1.setText(1, 'Overlapping Property Features (7 bit type 1)')
self.OPF_7bit_type1.setToolTip(1, 'For this descriptor, the amino acids are classified into 7 groups based their physicochemical properties.')
self.OPF_7bit_type2 = QTreeWidgetItem(self.Protein)
self.OPF_7bit_type2.setText(0, 'OPF_7bit type 2')
self.OPF_7bit_type2.setText(1, 'Overlapping Property Features (7 bit type 2)')
self.OPF_7bit_type2.setToolTip(1, 'For this descriptor, the amino acids are classified into 7 groups based their physicochemical properties.')
self.OPF_7bit_type3 = QTreeWidgetItem(self.Protein)
self.OPF_7bit_type3.setText(0, 'OPF_7bit type 3')
self.OPF_7bit_type3.setText(1, 'Overlapping Property Features (7 bit type 3)')
self.OPF_7bit_type3.setToolTip(1, 'For this descriptor, the amino acids are classified into 7 groups based their physicochemical properties.')
pASDC = QTreeWidgetItem(self.Protein)
pASDC.setText(0, 'ASDC')
pASDC.setText(1, 'Adaptive skip dipeptide composition')
pASDC.setToolTip(1, 'The adaptive skip dipeptide composition is a modified dipeptide composition,\n which sufficiently considers the correlation information present not only between\n adjacent residues but also between intervening residues.')
proteinKNN = QTreeWidgetItem(self.Protein)
proteinKNN.setText(0, 'KNN')
proteinKNN.setText(1, 'K-nearest neighbor')
proteinKNN.setToolTip(1, 'The KNN descriptor depicts how much one query sample resembles other samples.')
DistancePair = QTreeWidgetItem(self.Protein)
DistancePair.setText(0, 'DistancePair')
DistancePair.setText(1, 'PseAAC of Distance-Pairs and Reduced Alphabet')
DistancePair.setToolTip(1, 'The descriptor incorporates the amino acid distance pair coupling information \nand the amino acid reduced alphabet profile into the general pseudo amino acid composition vector.')
self.proteinAC = QTreeWidgetItem(self.Protein)
self.proteinAC.setText(0, 'AC')
self.proteinAC.setText(1, 'Auto covariance')
self.proteinAC.setToolTip(1, 'The AC descriptor measures the correlation of the same physicochemical \nindex between two amino acids separated by a distance of lag along the sequence. ')
self.proteinCC = QTreeWidgetItem(self.Protein)
self.proteinCC.setText(0, 'CC')
self.proteinCC.setText(1, 'Cross covariance')
self.proteinCC.setToolTip(1, 'The CC descriptor measures the correlation of two different physicochemical \nindices between two amino acids separated by lag nucleic acids along the sequence.')
proteinACC = QTreeWidgetItem(self.Protein)
proteinACC.setText(0, 'ACC')
proteinACC.setText(1, 'Auto-cross covariance')
proteinACC.setToolTip(1, 'The Dinucleotide-based Auto-Cross Covariance (ACC) encoding is a combination of AC and CC encoding.')
PseKRAAC_type1 = QTreeWidgetItem(self.Protein)
PseKRAAC_type1.setText(0, 'PseKRAAC type 1')
PseKRAAC_type1.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 1')
PseKRAAC_type1.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type2 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type2.setText(0, 'PseKRAAC type 2')
self.PseKRAAC_type2.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 2')
self.PseKRAAC_type2.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type3A = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type3A.setText(0, 'PseKRAAC type 3A')
self.PseKRAAC_type3A.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 3A')
self.PseKRAAC_type3A.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type3B = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type3B.setText(0, 'PseKRAAC type 3B')
self.PseKRAAC_type3B.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 3B')
self.PseKRAAC_type3B.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type4 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type4.setText(0, 'PseKRAAC type 4')
self.PseKRAAC_type4.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 4')
self.PseKRAAC_type4.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type5 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type5.setText(0, 'PseKRAAC type 5')
self.PseKRAAC_type5.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 5')
self.PseKRAAC_type5.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type6A = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type6A.setText(0, 'PseKRAAC type 6A')
self.PseKRAAC_type6A.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 6A')
self.PseKRAAC_type6A.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type6B = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type6B.setText(0, 'PseKRAAC type 6B')
self.PseKRAAC_type6B.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 6B')
self.PseKRAAC_type6B.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type6C = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type6C.setText(0, 'PseKRAAC type 6C')
self.PseKRAAC_type6C.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 6C')
self.PseKRAAC_type6C.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type7 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type7.setText(0, 'PseKRAAC type 7')
self.PseKRAAC_type7.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 7')
self.PseKRAAC_type7.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type8 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type8.setText(0, 'PseKRAAC type 8')
self.PseKRAAC_type8.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 8')
self.PseKRAAC_type8.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type9 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type9.setText(0, 'PseKRAAC type 9')
self.PseKRAAC_type9.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 9')
self.PseKRAAC_type9.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type10 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type10.setText(0, 'PseKRAAC type 10')
self.PseKRAAC_type10.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 10')
self.PseKRAAC_type10.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type11 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type11.setText(0, 'PseKRAAC type 11')
self.PseKRAAC_type11.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 11')
self.PseKRAAC_type11.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type12 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type12.setText(0, 'PseKRAAC type 12')
self.PseKRAAC_type12.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 12')
self.PseKRAAC_type12.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type13 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type13.setText(0, 'PseKRAAC type 13')
self.PseKRAAC_type13.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 13')
self.PseKRAAC_type13.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type14 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type14.setText(0, 'PseKRAAC type 14')
self.PseKRAAC_type14.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 14')
self.PseKRAAC_type14.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type15 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type15.setText(0, 'PseKRAAC type 15')
self.PseKRAAC_type15.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 15')
self.PseKRAAC_type15.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
self.PseKRAAC_type16 = QTreeWidgetItem(self.Protein)
self.PseKRAAC_type16.setText(0, 'PseKRAAC type 16')
self.PseKRAAC_type16.setText(1, 'Pseudo K-tuple Reduced Amino Acids Composition - type 16')
self.PseKRAAC_type16.setToolTip(1, 'Pseudo K-tuple Reduced Amino Acids Composition.')
# DNA
self.DNA = QTreeWidgetItem(self.desc_treeWidget)
self.DNA.setText(0, 'DNA')
Kmer = QTreeWidgetItem(self.DNA)
Kmer.setText(0, 'Kmer')
Kmer.setText(1, 'The occurrence frequencies of k neighboring nucleic acids')
Kmer.setToolTip(1, 'For kmer descriptor, the DNA or RNA sequences are represented\n as the occurrence frequencies of k neighboring nucleic acids.')
RCKmer = QTreeWidgetItem(self.DNA)
RCKmer.setText(0, 'RCKmer')
RCKmer.setText(1, 'Reverse Compliment Kmer')
RCKmer.setToolTip(1, 'The RCKmer descriptor is a variant of kmer descriptor,\n in which the kmers are not expected to be strand-specific. ')
dnaMismatch = QTreeWidgetItem(self.DNA)
dnaMismatch.setText(0, 'Mismatch')
dnaMismatch.setText(1, 'Mismatch profile')
dnaMismatch.setToolTip(1, 'The mismatch profile also calculates the occurrences of kmers,\n but allows max m inexact matching (m < k).')
dnaSubsequence = QTreeWidgetItem(self.DNA)
dnaSubsequence.setText(0, 'Subsequence')
dnaSubsequence.setText(1, 'Subsequence profile')
dnaSubsequence.setToolTip(1, 'The subsequence descriptor allows non-contiguous matching.')
self.NAC = QTreeWidgetItem(self.DNA)
self.NAC.setText(0, 'NAC')
self.NAC.setText(1, 'Nucleic Acid Composition')
self.NAC.setToolTip(1, 'The NAC encoding calculates the frequency of each nucleic acid type in a nucleotide sequence.')
# DNC = QTreeWidgetItem(self.DNA)
# DNC.setText(0, 'DNC')
# DNC.setText(1, 'Di-Nucleotide Composition')
# TNC = QTreeWidgetItem(self.DNA)
# TNC.setText(0, 'TNC')
# TNC.setText(1, 'Tri-Nucleotide Composition')
ANF = QTreeWidgetItem(self.DNA)
ANF.setText(0, 'ANF')
ANF.setText(1, 'Accumulated Nucleotide Frequency')
ANF.setToolTip(1, 'The ANF encoding include the nucleotide frequency information and the distribution of each nucleotide in the RNA sequence.')
ENAC = QTreeWidgetItem(self.DNA)
ENAC.setText(0, 'ENAC')
ENAC.setText(1, 'Enhanced Nucleic Acid Composition')
ENAC.setToolTip(1, 'The ENAC descriptor calculates the NAC based on the sequence window\n of fixed length that continuously slides from the 5\' to 3\' terminus\n of each nucleotide sequence and can be usually applied to encode the\n nucleotide sequence with an equal length.')
DNAbinary = QTreeWidgetItem(self.DNA)
DNAbinary.setText(0, 'binary')
DNAbinary.setText(1, 'DNA binary')
DNAbinary.setToolTip(1, 'In the Binary encoding, each amino acid is represented by a 4-dimensional binary vector.')
dnaPS2 = QTreeWidgetItem(self.DNA)
dnaPS2.setText(0, 'PS2')
dnaPS2.setText(1, 'Position-specific of two nucleotides')
dnaPS2.setToolTip(1, 'There are 4 x 4 = 16 pairs of adjacent pairwise nucleotides, \nthus a single variable representing one such pair gets one-hot\n (i.e. binary) encoded into 16 binary variables.')
self.dnaPS3 = QTreeWidgetItem(self.DNA)
self.dnaPS3.setText(0, 'PS3')
self.dnaPS3.setText(1, 'Position-specific of three nucleotides')
self.dnaPS3.setToolTip(1, 'The PS3 descriptor is encoded for three adjacent nucleotides in a similar way with PS2.')
self.dnaPS4 = QTreeWidgetItem(self.DNA)
self.dnaPS4.setText(0, 'PS4')
self.dnaPS4.setText(1, 'Position-specific of four nucleotides')
self.dnaPS4.setToolTip(1, 'The PS4 descriptor is encoded for four adjacent nucleotides in a similar way with PS2.')
CKSNAP = QTreeWidgetItem(self.DNA)
CKSNAP.setText(0, 'CKSNAP')
CKSNAP.setText(1, 'Composition of k-spaced Nucleic Acid Pairs')
CKSNAP.setToolTip(1, 'The CKSNAP feature encoding calculates the frequency of nucleic acid pairs separated by any k nucleic acid.')
NCP = QTreeWidgetItem(self.DNA)
NCP.setText(0, 'NCP')
NCP.setText(1, 'Nucleotide Chemical Property')
NCP.setToolTip(1, 'Based on chemical properties, A can be represented by coordinates (1, 1, 1), \nC can be represented by coordinates (0, 1, 0), G can be represented by coordinates (1, 0, 0), \nU can be represented by coordinates (0, 0, 1). ')
PSTNPss = QTreeWidgetItem(self.DNA)
PSTNPss.setText(0, 'PSTNPss')
PSTNPss.setText(1, 'Position-specific trinucleotide propensity based on single-strand')
PSTNPss.setToolTip(1, 'The PSTNPss descriptor usie a statistical strategy based on single-stranded characteristics of DNA or RNA.')
PSTNPds = QTreeWidgetItem(self.DNA)
PSTNPds.setText(0, 'PSTNPds')
PSTNPds.setText(1, 'Position-specific trinucleotide propensity based on double-strand')
PSTNPds.setToolTip(1, 'The PSTNPds descriptor use a statistical strategy based on double-stranded characteristics of DNA according to complementary base pairing.')
EIIP = QTreeWidgetItem(self.DNA)
EIIP.setText(0, 'EIIP')
EIIP.setText(1, 'Electron-ion interaction pseudopotentials')
EIIP.setToolTip(1, 'The EIIP directly use the EIIP value represent the nucleotide in the DNA sequence.')
PseEIIP = QTreeWidgetItem(self.DNA)
PseEIIP.setText(0, 'PseEIIP')
PseEIIP.setText(1, 'Electron-ion interaction pseudopotentials of trinucleotide')
PseEIIP.setToolTip(1, 'Electron-ion interaction pseudopotentials of trinucleotide.')
DNAASDC = QTreeWidgetItem(self.DNA)
DNAASDC.setText(0, 'ASDC')
DNAASDC.setText(1, 'Adaptive skip dinucleotide composition')
DNAASDC.setToolTip(1, 'The adaptive skip dipeptide composition is a modified dinucleotide composition, \nwhich sufficiently considers the correlation information present not only between \nadjacent residues but also between intervening residues.')
dnaDBE = QTreeWidgetItem(self.DNA)
dnaDBE.setText(0, 'DBE')
dnaDBE.setText(1, 'Dinucleotide binary encoding')
dnaDBE.setToolTip(1, 'The DBE descriptor encapsulates the positional information of the dinucleotide at each position in the sequence.')
dnaLPDF = QTreeWidgetItem(self.DNA)
dnaLPDF.setText(0, 'LPDF')
dnaLPDF.setText(1, 'Local position-specific dinucleotide frequency')
dnaLPDF.setToolTip(1, 'The LPDF descriptor calculate the local position-specific dinucleotide frequency.')
dnaDPCP = QTreeWidgetItem(self.DNA)
dnaDPCP.setText(0, 'DPCP')
dnaDPCP.setText(1, 'Dinucleotide physicochemical properties')
dnaDPCP.setToolTip(1, 'The DPCP descriptor calculate the value of frequency of dinucleotide multiplied by dinucleotide physicochemical properties.')
self.dnaDPCP2 = QTreeWidgetItem(self.DNA)
self.dnaDPCP2.setText(0, 'DPCP type2')
self.dnaDPCP2.setText(1, 'Dinucleotide physicochemical properties type 2')
self.dnaDPCP2.setToolTip(1, 'The DPCP2 descriptor calculate the position specific dinucleotide physicochemical properties.')
dnaTPCP = QTreeWidgetItem(self.DNA)
dnaTPCP.setText(0, 'TPCP')
dnaTPCP.setText(1, 'Trinucleotide physicochemical properties')
dnaTPCP.setToolTip(1, 'The TPCP descriptor calculate the value of frequency of trinucleotide multiplied by trinucleotide physicochemical properties.')
self.dnaTPCP2 = QTreeWidgetItem(self.DNA)
self.dnaTPCP2.setText(0, 'TPCP type2')
self.dnaTPCP2.setText(1, 'Trinucleotide physicochemical properties type 2')
self.dnaTPCP2.setToolTip(1, 'The TPCP2 descriptor calculate the position specific trinucleotide physicochemical properties.')
dnaMMI = QTreeWidgetItem(self.DNA)
dnaMMI.setText(0, 'MMI')
dnaMMI.setText(1, 'Multivariate mutual information')
dnaMMI.setToolTip(1, 'The MMI descriptor calculate multivariate mutual information on a DNA/RNA sequence.')
dnaKNN = QTreeWidgetItem(self.DNA)
dnaKNN.setText(0, 'KNN')
dnaKNN.setText(1, 'K-nearest neighbor')
dnaKNN.setToolTip(1, 'The K-nearest neighbor descriptor depicts how much one query sample resembles other samples.')
dnazcurve9bit = QTreeWidgetItem(self.DNA)
dnazcurve9bit.setText(0, 'Z_curve_9bit')
dnazcurve9bit.setText(1, 'The Z curve parameters for frequencies of phase-specific mononucleotides')
dnazcurve9bit.setToolTip(1, 'The Z curve parameters for frequencies of phase-specific mononucleotides.')
self.dnazcurve12bit = QTreeWidgetItem(self.DNA)
self.dnazcurve12bit.setText(0, 'Z_curve_12bit')
self.dnazcurve12bit.setText(1, 'The Z curve parameters for frequencies of phaseindependent di-nucleotides')
self.dnazcurve12bit.setToolTip(1, 'The Z curve parameters for frequencies of phaseindependent di-nucleotides')
self.dnazcurve36bit = QTreeWidgetItem(self.DNA)
self.dnazcurve36bit.setText(0, 'Z_curve_36bit')
self.dnazcurve36bit.setText(1, 'The Z curve parameters for frequencies of phase-specific di-nucleotides')
self.dnazcurve36bit.setToolTip(1, 'The Z curve parameters for frequencies of phase-specific di-nucleotides')
self.dnazcurve48bit = QTreeWidgetItem(self.DNA)
self.dnazcurve48bit.setText(0, 'Z_curve_48bit')
self.dnazcurve48bit.setText(1, 'The Z curve parameters for frequencies of phaseindependent tri-nucleotides')
self.dnazcurve48bit.setToolTip(1, 'The Z curve parameters for frequencies of phaseindependent tri-nucleotides')
self.dnazcurve144bit = QTreeWidgetItem(self.DNA)
self.dnazcurve144bit.setText(0, 'Z_curve_144bit')
self.dnazcurve144bit.setText(1, 'The Z curve parameters for frequencies of phase-specific tri-nucleotides')
self.dnazcurve144bit.setToolTip(1, 'The Z curve parameters for frequencies of phase-specific tri-nucleotides')
dnaNMBroto = QTreeWidgetItem(self.DNA)
dnaNMBroto.setText(0, 'NMBroto')
dnaNMBroto.setText(1, 'Normalized Moreau-Broto Autocorrelation')
dnaNMBroto.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
dnaMoran = QTreeWidgetItem(self.DNA)
dnaMoran.setText(0, 'Moran')
dnaMoran.setText(1, 'Moran correlation')
dnaMoran.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
dnaGeary = QTreeWidgetItem(self.DNA)
dnaGeary.setText(0, 'Geary')
dnaGeary.setText(1, 'Geary correlation')
dnaGeary.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
self.DAC = QTreeWidgetItem(self.DNA)
self.DAC.setText(0, 'DAC')
self.DAC.setText(1, 'Dinucleotide-based Auto Covariance')
self.DAC.setToolTip(1, 'The DAC descriptor measures the correlation of the same physicochemical \nindex between two dinucleotides separated by a distance of lag along the sequence.')
self.DCC = QTreeWidgetItem(self.DNA)
self.DCC.setText(0, 'DCC')
self.DCC.setText(1, 'Dinucleotide-based Cross Covariance')
self.DCC.setToolTip(1, 'The DCC descriptor measures the correlation of two different physicochemical \nindices between two dinucleotides separated by lag nucleic acids along the sequence.')
DACC = QTreeWidgetItem(self.DNA)
DACC.setText(0, 'DACC')
DACC.setText(1, 'Dinucleotide-based Auto-Cross Covariance')
DACC.setToolTip(1, 'The DACC encoding is a combination of DAC and DCC encoding.')
self.TAC = QTreeWidgetItem(self.DNA)
self.TAC.setText(0, 'TAC')
self.TAC.setText(1, 'Trinucleotide-based Auto Covariance')
self.TAC.setToolTip(1, 'The TAC descriptor measures the correlation of the same physicochemical \nindex between two trinucleotides separated by a distance of lag along the sequence.')
self.TCC = QTreeWidgetItem(self.DNA)
self.TCC.setText(0, 'TCC')
self.TCC.setText(1, 'Trinucleotide-based Cross Covariance')
self.TCC.setToolTip(1, 'The DCC descriptor measures the correlation of two different physicochemical \nindices between two trinucleotides separated by lag nucleic acids along the sequence.')
TACC = QTreeWidgetItem(self.DNA)
TACC.setText(0, 'TACC')
TACC.setText(1, 'Trinucleotide-based Auto-Cross Covariance')
TACC.setToolTip(1, 'The TACC encoding is a combination of TAC and TCC encoding.')
PseDNC = QTreeWidgetItem(self.DNA)
PseDNC.setText(0, 'PseDNC')
PseDNC.setText(1, 'Pseudo Dinucleotide Composition')
PseDNC.setToolTip(1, 'The PseDNC encodings incorporate contiguous local sequence-order information and the global sequence-order information into the feature vector of the nucleotide sequence.')
PseKNC = QTreeWidgetItem(self.DNA)
PseKNC.setText(0, 'PseKNC')
PseKNC.setText(1, 'Pseudo k-tupler Composition')
PseKNC.setToolTip(1, 'The PseKNC descriptor incorporate the k-tuple nucleotide composition.')
PCPseDNC = QTreeWidgetItem(self.DNA)
PCPseDNC.setText(0, 'PCPseDNC')
PCPseDNC.setText(1, 'Parallel Correlation Pseudo Dinucleotide Composition')
PCPseDNC.setToolTip(1, 'The PCPseDNC descriptor consider parallel correlation pseudo trinucleotide composition information.')
PCPseTNC = QTreeWidgetItem(self.DNA)
PCPseTNC.setText(0, 'PCPseTNC')
PCPseTNC.setText(1, 'Parallel Correlation Pseudo Trinucleotide Composition')
PCPseTNC.setToolTip(1, 'The PCPseTNC descriptor consider parallel correlation pseudo trinucleotide composition information.')
SCPseDNC = QTreeWidgetItem(self.DNA)
SCPseDNC.setText(0, 'SCPseDNC')
SCPseDNC.setText(1, 'Series Correlation Pseudo Dinucleotide Composition')
SCPseDNC.setToolTip(1, 'The SCPseDNC descriptor consider series correlation pseudo dinucleotide composition information.')
SCPseTNC = QTreeWidgetItem(self.DNA)
SCPseTNC.setText(0, 'SCPseTNC')
SCPseTNC.setText(1, 'Series Correlation Pseudo Trinucleotide Composition')
SCPseTNC.setToolTip(1, 'The SCPseTNC descriptor consider series correlation pseudo trinucleotide composition.')
# RNA
self.RNA = QTreeWidgetItem(self.desc_treeWidget)
self.RNA.setText(0, 'RNA')
RNAKmer = QTreeWidgetItem(self.RNA)
RNAKmer.setText(0, 'Kmer')
RNAKmer.setText(1, 'The occurrence frequencies of k neighboring nucleic acids')
RNAKmer.setToolTip(1, 'For kmer descriptor, the DNA or RNA sequences are represented\n as the occurrence frequencies of k neighboring nucleic acids.')
rnaMismatch = QTreeWidgetItem(self.RNA)
rnaMismatch.setText(0, 'Mismatch')
rnaMismatch.setText(1, 'Mismatch profile')
rnaMismatch.setToolTip(1, 'The mismatch profile also calculates the occurrences of kmers,\n but allows max m inexact matching (m < k).')
rnaSubsequence = QTreeWidgetItem(self.RNA)
rnaSubsequence.setText(0, 'Subsequence')
rnaSubsequence.setText(1, 'Subsequence profile')
rnaSubsequence.setToolTip(1, 'The subsequence descriptor allows non-contiguous matching.')
self.RNANAC = QTreeWidgetItem(self.RNA)
self.RNANAC.setText(0, 'NAC')
self.RNANAC.setText(1, 'Nucleic Acid Composition')
self.RNANAC.setToolTip(1, 'The NAC encoding calculates the frequency of each nucleic acid type in a nucleotide sequence.')
RNAENAC = QTreeWidgetItem(self.RNA)
RNAENAC.setText(0, 'ENAC')
RNAENAC.setText(1, 'Enhanced Nucleic Acid Composition')
RNAENAC.setToolTip(1, 'The ENAC descriptor calculates the NAC based on the sequence window\n of fixed length that continuously slides from the 5\' to 3\' terminus\n of each nucleotide sequence and can be usually applied to encode the\n nucleotide sequence with an equal length.')
# RNADNC = QTreeWidgetItem(self.RNA)
# RNADNC.setText(0, 'DNC')
# RNADNC.setText(1, 'Di-Nucleotide Composition')
# RNATNC = QTreeWidgetItem(self.RNA)
# RNATNC.setText(0, 'TNC')
# RNATNC.setText(1, 'Tri-Nucleotide Composition')
RNAANF = QTreeWidgetItem(self.RNA)
RNAANF.setText(0, 'ANF')
RNAANF.setText(1, 'Accumulated Nucleotide Frequency')
RNAANF.setToolTip(1, 'The ANF encoding include the nucleotide frequency information and the distribution of each nucleotide in the RNA sequence.')
RNANCP = QTreeWidgetItem(self.RNA)
RNANCP.setText(0, 'NCP')
RNANCP.setText(1, 'Nucleotide Chemical Property')
RNANCP.setToolTip(1, 'Based on chemical properties, A can be represented by coordinates (1, 1, 1), \nC can be represented by coordinates (0, 1, 0), G can be represented by coordinates (1, 0, 0), \nU can be represented by coordinates (0, 0, 1). ')
RNAPSTNPss = QTreeWidgetItem(self.RNA)
RNAPSTNPss.setText(0, 'PSTNPss')
RNAPSTNPss.setText(1, 'Position-specific trinucleotide propensity based on single-strand')
RNAPSTNPss.setToolTip(1, 'The PSTNPss descriptor usie a statistical strategy based on single-stranded characteristics of DNA or RNA.')
RNAbinary = QTreeWidgetItem(self.RNA)
RNAbinary.setText(0, 'binary')
RNAbinary.setText(1, 'RNA binary')
RNAbinary.setToolTip(1, 'In the Binary encoding, each amino acid is represented by a 4-dimensional binary vector.')
rnaPS2 = QTreeWidgetItem(self.RNA)
rnaPS2.setText(0, 'PS2')
rnaPS2.setText(1, 'Position-specific of two nucleotides')
rnaPS2.setToolTip(1, 'There are 4 x 4 = 16 pairs of adjacent pairwise nucleotides, \nthus a single variable representing one such pair gets one-hot\n (i.e. binary) encoded into 16 binary variables.')
self.rnaPS3 = QTreeWidgetItem(self.RNA)
self.rnaPS3.setText(0, 'PS3')
self.rnaPS3.setText(1, 'Position-specific of three nucleotides')
self.rnaPS3.setToolTip(1, 'The PS3 descriptor is encoded for three adjacent nucleotides in a similar way with PS2.')
self.rnaPS4 = QTreeWidgetItem(self.RNA)
self.rnaPS4.setText(0, 'PS4')
self.rnaPS4.setText(1, 'Position-specific of four nucleotides')
self.rnaPS4.setToolTip(1, 'The PS4 descriptor is encoded for four adjacent nucleotides in a similar way with PS2.')
RNACKSNAP = QTreeWidgetItem(self.RNA)
RNACKSNAP.setText(0, 'CKSNAP')
RNACKSNAP.setText(1, 'Composition of k-spaced Nucleic Acid Pairs')
RNACKSNAP.setToolTip(1, 'The CKSNAP feature encoding calculates the frequency of nucleic acid pairs separated by any k nucleic acid.')
RNAASDC = QTreeWidgetItem(self.RNA)
RNAASDC.setText(0, 'ASDC')
RNAASDC.setText(1, 'Adaptive skip di-nucleotide composition')
RNAASDC.setToolTip(1, 'The adaptive skip dipeptide composition is a modified dinucleotide composition, \nwhich sufficiently considers the correlation information present not only between \nadjacent residues but also between intervening residues.')
rnaDBE = QTreeWidgetItem(self.RNA)
rnaDBE.setText(0, 'DBE')
rnaDBE.setText(1, 'Dinucleotide binary encoding')
rnaDBE.setToolTip(1, 'The DBE descriptor encapsulates the positional information of the dinucleotide at each position in the sequence.')
rnaLPDF = QTreeWidgetItem(self.RNA)
rnaLPDF.setText(0, 'LPDF')
rnaLPDF.setText(1, 'Local position-specific dinucleotide frequency')
rnaLPDF.setToolTip(1, 'The LPDF descriptor calculate the local position-specific dinucleotide frequency.')
rnaDPCP = QTreeWidgetItem(self.RNA)
rnaDPCP.setText(0, 'DPCP')
rnaDPCP.setText(1, 'Dinucleotide physicochemical properties')
rnaDPCP.setToolTip(1, 'The DPCP descriptor calculate the value of frequency of dinucleotide multiplied by dinucleotide physicochemical properties.')
self.rnaDPCP2 = QTreeWidgetItem(self.RNA)
self.rnaDPCP2.setText(0, 'DPCP type2')
self.rnaDPCP2.setText(1, 'Dinucleotide physicochemical properties type 2')
self.rnaDPCP2.setToolTip(1, 'The DPCP2 descriptor calculate the position specific dinucleotide physicochemical properties.')
rnaMMI = QTreeWidgetItem(self.RNA)
rnaMMI.setText(0, 'MMI')
rnaMMI.setText(1, 'Multivariate mutual information')
rnaMMI.setToolTip(1, 'The MMI descriptor calculate multivariate mutual information on a DNA/RNA sequence.')
rnaKNN = QTreeWidgetItem(self.RNA)
rnaKNN.setText(0, 'KNN')
rnaKNN.setText(1, 'K-nearest neighbor')
rnaKNN.setToolTip(1, 'The K-nearest neighbor descriptor depicts how much one query sample resembles other samples.')
rnazcurve9bit = QTreeWidgetItem(self.RNA)
rnazcurve9bit.setText(0, 'Z_curve_9bit')
rnazcurve9bit.setText(1, 'The Z curve parameters for frequencies of phase-specific mononucleotides')
rnazcurve9bit.setToolTip(1, 'The Z curve parameters for frequencies of phase-specific mononucleotides.')
self.rnazcurve12bit = QTreeWidgetItem(self.RNA)
self.rnazcurve12bit.setText(0, 'Z_curve_12bit')
self.rnazcurve12bit.setText(1, 'The Z curve parameters for frequencies of phaseindependent di-nucleotides')
self.rnazcurve12bit.setToolTip(1, 'The Z curve parameters for frequencies of phaseindependent di-nucleotides')
self.rnazcurve36bit = QTreeWidgetItem(self.RNA)
self.rnazcurve36bit.setText(0, 'Z_curve_36bit')
self.rnazcurve36bit.setText(1, 'The Z curve parameters for frequencies of phase-specific di-nucleotides')
self.rnazcurve36bit.setToolTip(1, 'The Z curve parameters for frequencies of phase-specific di-nucleotides')
self.rnazcurve48bit = QTreeWidgetItem(self.RNA)
self.rnazcurve48bit.setText(0, 'Z_curve_48bit')
self.rnazcurve48bit.setText(1, 'The Z curve parameters for frequencies of phaseindependent tri-nucleotides')
self.rnazcurve48bit.setToolTip(1, 'The Z curve parameters for frequencies of phaseindependent tri-nucleotides')
self.rnazcurve144bit = QTreeWidgetItem(self.RNA)
self.rnazcurve144bit.setText(0, 'Z_curve_144bit')
self.rnazcurve144bit.setText(1, 'The Z curve parameters for frequencies of phase-specific tri-nucleotides')
self.rnazcurve144bit.setToolTip(1, 'The Z curve parameters for frequencies of phase-specific tri-nucleotides')
rnaNMBroto = QTreeWidgetItem(self.RNA)
rnaNMBroto.setText(0, 'NMBroto')
rnaNMBroto.setText(1, 'Normalized Moreau-Broto Autocorrelation')
rnaNMBroto.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
rnaMoran = QTreeWidgetItem(self.RNA)
rnaMoran.setText(0, 'Moran')
rnaMoran.setText(1, 'Moran correlation')
rnaMoran.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
rnaGeary = QTreeWidgetItem(self.RNA)
rnaGeary.setText(0, 'Geary')
rnaGeary.setText(1, 'Geary correlation')
rnaGeary.setToolTip(1, 'The autocorrelation descriptors are defined based on the distribution\n of amino acid properties along the sequence.')
self.RNADAC = QTreeWidgetItem(self.RNA)
self.RNADAC.setText(0, 'DAC')
self.RNADAC.setText(1, 'Dinucleotide-based Auto Covariance')
self.RNADAC.setToolTip(1, 'The DAC descriptor measures the correlation of the same physicochemical \nindex between two dinucleotides separated by a distance of lag along the sequence.')
self.RNADCC = QTreeWidgetItem(self.RNA)
self.RNADCC.setText(0, 'DCC')
self.RNADCC.setText(1, 'Dinucleotide-based Cross Covariance')
self.RNADCC.setToolTip(1, 'The DCC descriptor measures the correlation of two different physicochemical \nindices between two dinucleotides separated by lag nucleic acids along the sequence.')
RNADACC = QTreeWidgetItem(self.RNA)
RNADACC.setText(0, 'DACC')
RNADACC.setText(1, 'Dinucleotide-based Auto-Cross Covariance')
RNADACC.setToolTip(1, 'The DACC encoding is a combination of DAC and DCC encoding.')
RNAPseDNC = QTreeWidgetItem(self.RNA)
RNAPseDNC.setText(0, 'PseDNC')
RNAPseDNC.setText(1, 'Pseudo Nucleic Acid Composition')
RNAPseDNC.setToolTip(1, 'The PseDNC encodings incorporate contiguous local sequence-order information and the global sequence-order information into the feature vector of the nucleotide sequence.')
RNAPseKNC = QTreeWidgetItem(self.RNA)
RNAPseKNC.setText(0, 'PseKNC')
RNAPseKNC.setText(1, 'Pseudo k-tupler Composition')
RNAPseKNC.setToolTip(1, 'The PseKNC descriptor incorporate the k-tuple nucleotide composition.')
RNAPCPseDNC = QTreeWidgetItem(self.RNA)
RNAPCPseDNC.setText(0, 'PCPseDNC')
RNAPCPseDNC.setText(1, 'Parallel Correlation Pseudo Dinucleotide Composition')
RNAPCPseDNC.setToolTip(1, 'The PCPseDNC descriptor consider parallel correlation pseudo trinucleotide composition information.')
RNASCPseDNC = QTreeWidgetItem(self.RNA)
RNASCPseDNC.setText(0, 'SCPseDNC')
RNASCPseDNC.setText(1, 'Series Correlation Pseudo Dinucleotide Composition')
RNASCPseDNC.setToolTip(1, 'The SCPseDNC descriptor consider series correlation pseudo dinucleotide composition information.')
treeLayout.addWidget(self.desc_treeWidget)
treeGroupBox.setLayout(treeLayout)
self.Protein.setDisabled(True)
self.DNA.setDisabled(True)
self.RNA.setDisabled(True)
## parameter
paraGroupBox = QGroupBox('Parameters', self)
paraGroupBox.setMaximumHeight(150)
paraGroupBox.setFont(QFont('Arial', 10))
paraLayout = QFormLayout(paraGroupBox)
self.desc_sequenceType_lineEdit = QLineEdit()
self.desc_sequenceType_lineEdit.setFont(QFont('Arial', 8))
self.desc_sequenceType_lineEdit.setEnabled(False)
paraLayout.addRow('Sequence type:', self.desc_sequenceType_lineEdit)
self.desc_currentDescriptor_lineEdit = QLineEdit()
self.desc_currentDescriptor_lineEdit.setFont(QFont('Arial', 8))
self.desc_currentDescriptor_lineEdit.setEnabled(False)
paraLayout.addRow('Descriptor:', self.desc_currentDescriptor_lineEdit)
self.desc_para_lineEdit = QLineEdit()
self.desc_para_lineEdit.setFont(QFont('Arial', 8))
self.desc_para_lineEdit.setEnabled(False)
paraLayout.addRow('Parameter(s):', self.desc_para_lineEdit)
## start button
startGroupBox = QGroupBox('Operator', self)
startGroupBox.setFont(QFont('Arial', 10))
startLayout = QHBoxLayout(startGroupBox)
self.desc_start_button = QPushButton('Start')
self.desc_start_button.clicked.connect(self.run_calculate_descriptor)
self.desc_start_button.setFont(QFont('Arial', 10))
self.desc_save_button = QPushButton('Save')
self.desc_save_button.clicked.connect(self.save_descriptor)
self.desc_save_button.setFont(QFont('Arial', 10))
self.desc_slim_button = QPushButton('Show descriptor slims')
self.desc_slim_button.clicked.connect(self.showDescriptorSlims)
self.desc_slim_button.setFont(QFont('Arial', 10))
startLayout.addWidget(self.desc_start_button)
startLayout.addWidget(self.desc_save_button)
startLayout.addWidget(self.desc_slim_button)
### layout
left_vertical_layout = QVBoxLayout()
left_vertical_layout.addWidget(topGroupBox)
left_vertical_layout.addWidget(treeGroupBox)
left_vertical_layout.addWidget(paraGroupBox)
left_vertical_layout.addWidget(startGroupBox)
#### widget
leftWidget = QWidget()
leftWidget.setLayout(left_vertical_layout)
#### QTableWidget
viewWidget = QTabWidget()
self.desc_tableWidget = TableWidget.TableWidget()
self.desc_histWidget = QWidget()
self.desc_hist_layout = QVBoxLayout(self.desc_histWidget)
self.desc_histogram = PlotWidgets.HistogramWidget()
self.desc_hist_layout.addWidget(self.desc_histogram)
viewWidget.addTab(self.desc_tableWidget, ' Data ')
viewWidget.addTab(self.desc_histWidget, ' Data distribution ')
##### splitter
splitter_1 = QSplitter(Qt.Horizontal)
splitter_1.addWidget(leftWidget)
splitter_1.addWidget(viewWidget)
splitter_1.setSizes([100, 1000])
###### vertical layout
vLayout = QVBoxLayout()
## status bar
statusGroupBox = QGroupBox('Status', self)
statusGroupBox.setFont(QFont('Arial', 10))
statusLayout = QHBoxLayout(statusGroupBox)
self.desc_status_label = QLabel('Welcome to the iLearnPlus Basic')
self.desc_progress_bar = QLabel()
self.desc_progress_bar.setMaximumWidth(230)
statusLayout.addWidget(self.desc_status_label)
statusLayout.addWidget(self.desc_progress_bar)
splitter_2 = QSplitter(Qt.Vertical)
splitter_2.addWidget(splitter_1)
splitter_2.addWidget(statusGroupBox)
splitter_2.setSizes([1000, 100])
vLayout.addWidget(splitter_2)
self.tab_descriptor.setLayout(vLayout)
def setup_tab_cluster(self):
# file
topGroupBox = QGroupBox('Load data', self)
topGroupBox.setFont(QFont('Arial', 10))
topGroupBox.setMinimumHeight(100)
topGroupBoxLayout = QGridLayout()
self.clust_file_lineEdit = QLineEdit()
self.clust_file_lineEdit.setFont(QFont('Arial', 8))
self.clust_file_button = QPushButton('Open')
self.clust_file_button.setFont(QFont('Arial', 10))
self.clust_file_button.clicked.connect(self.data_from_file)
self.clust_data_lineEdit = QLineEdit()
self.clust_data_lineEdit.setFont(QFont('Arial', 8))
self.clust_data_button = QPushButton('Select')
self.clust_data_button.clicked.connect(self.data_from_descriptor)
self.clust_label2 = QLabel('Data shape: ')
topGroupBoxLayout.addWidget(self.clust_file_lineEdit, 0, 0)
topGroupBoxLayout.addWidget(self.clust_file_button, 0, 1)
topGroupBoxLayout.addWidget(self.clust_data_lineEdit, 1, 0)
topGroupBoxLayout.addWidget(self.clust_data_button, 1, 1)
topGroupBoxLayout.addWidget(self.clust_label2, 2, 0, 1, 2)
topGroupBox.setLayout(topGroupBoxLayout)
# tree
treeGroupBox = QGroupBox('Analysis algorithms', self)
treeGroupBox.setFont(QFont('Arial', 10))
treeLayout = QHBoxLayout()
self.clust_treeWidget = QTreeWidget()
self.clust_treeWidget.setColumnCount(2)
self.clust_treeWidget.setMinimumWidth(300)
self.clust_treeWidget.setColumnWidth(0, 150)
self.clust_treeWidget.setFont(QFont('Arial', 8))
self.clust_treeWidget.setHeaderLabels(['Methods', 'Definition'])
self.clusterMethods = QTreeWidgetItem(self.clust_treeWidget)
self.clusterMethods.setExpanded(True) # set node expanded
self.clusterMethods.setText(0, 'Cluster algorithms')
self.clust_treeWidget.clicked.connect(self.clust_tree_clicked)
kmeans = QTreeWidgetItem(self.clusterMethods)
kmeans.setText(0, 'kmeans')
kmeans.setText(1, 'kmeans clustering')
minikmeans = QTreeWidgetItem(self.clusterMethods)
minikmeans.setText(0, 'MiniBatchKMeans')
minikmeans.setText(1, 'MiniBatchKMeans clustering')
gmm = QTreeWidgetItem(self.clusterMethods)
gmm.setText(0, 'GM')
gmm.setText(1, 'Gaussian mixture clustering')
agg = QTreeWidgetItem(self.clusterMethods)
agg.setText(0, 'Agglomerative')
agg.setText(1, 'Agglomerative clustering')
spectral = QTreeWidgetItem(self.clusterMethods)
spectral.setText(0, 'Spectral')
spectral.setText(1, 'Spectral clustering')
mcl = QTreeWidgetItem(self.clusterMethods)
mcl.setText(0, 'MCL')
mcl.setText(1, 'Markov Cluster algorithm')
hcluster = QTreeWidgetItem(self.clusterMethods)
hcluster.setText(0, 'hcluster')
hcluster.setText(1, 'Hierarchical clustering')
apc = QTreeWidgetItem(self.clusterMethods)
apc.setText(0, 'APC')
apc.setText(1, 'Affinity Propagation Clustering')
meanshift = QTreeWidgetItem(self.clusterMethods)
meanshift.setText(0, 'meanshift')
meanshift.setText(1, 'Mean-shift Clustering')
dbscan = QTreeWidgetItem(self.clusterMethods)
dbscan.setText(0, 'DBSCAN')
dbscan.setText(1, 'DBSCAN Clustering')
self.dimensionReduction = QTreeWidgetItem(self.clust_treeWidget)
self.dimensionReduction.setExpanded(True) # set node expanded
self.dimensionReduction.setText(0, 'Dimensionality reduction algorithms')
pca = QTreeWidgetItem(self.dimensionReduction)
pca.setText(0, 'PCA')
pca.setText(1, 'Principal component analysis')