forked from eliorc/node2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
poetry.lock
192 lines (176 loc) · 13.1 KB
/
poetry.lock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
[[package]]
name = "colorama"
version = "0.4.4"
description = "Cross-platform colored terminal text."
category = "main"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
[[package]]
name = "gensim"
version = "4.1.2"
description = "Python framework for fast Vector Space Modelling"
category = "main"
optional = false
python-versions = ">=3.6"
[package.dependencies]
numpy = ">=1.17.0"
scipy = ">=0.18.1"
smart-open = ">=1.8.1"
[package.extras]
distributed = ["Pyro4 (>=4.27)"]
docs = ["Morfessor (>=2.0.2a4)", "Pyro4", "Pyro4 (>=4.27)", "annoy", "cython", "matplotlib", "memory-profiler", "mock", "nltk", "nmslib", "pandas", "pyemd", "pytest", "sphinx", "sphinx-gallery", "sphinxcontrib-napoleon", "sphinxcontrib.programoutput", "statsmodels", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"]
test = ["Morfessor (>=2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "testfixtures", "visdom (>=0.1.8,!=0.1.8.7)"]
test-win = ["Morfessor (>=2.0.2a4)", "cython", "mock", "nmslib", "pyemd", "pytest", "testfixtures"]
[[package]]
name = "joblib"
version = "1.2.0"
description = "Lightweight pipelining with Python functions"
category = "main"
optional = false
python-versions = ">=3.7"
[[package]]
name = "networkx"
version = "2.6.3"
description = "Python package for creating and manipulating graphs and networks"
category = "main"
optional = false
python-versions = ">=3.7"
[package.extras]
default = ["matplotlib (>=3.3)", "numpy (>=1.19)", "pandas (>=1.1)", "scipy (>=1.5,!=1.6.1)"]
developer = ["black (==21.5b1)", "pre-commit (>=2.12)"]
doc = ["nb2plots (>=0.6)", "numpydoc (>=1.1)", "pillow (>=8.2)", "pydata-sphinx-theme (>=0.6,<1.0)", "sphinx (>=4.0,<5.0)", "sphinx-gallery (>=0.9,<1.0)", "texext (>=0.6.6)"]
extra = ["lxml (>=4.5)", "pydot (>=1.4.1)", "pygraphviz (>=1.7)"]
test = ["codecov (>=2.1)", "pytest (>=6.2)", "pytest-cov (>=2.12)"]
[[package]]
name = "numpy"
version = "1.22.0"
description = "NumPy is the fundamental package for array computing with Python."
category = "main"
optional = false
python-versions = ">=3.8"
[[package]]
name = "scipy"
version = "1.6.1"
description = "SciPy: Scientific Library for Python"
category = "main"
optional = false
python-versions = ">=3.7"
[package.dependencies]
numpy = ">=1.16.5"
[[package]]
name = "smart-open"
version = "5.2.1"
description = "Utils for streaming large files (S3, HDFS, GCS, Azure Blob Storage, gzip, bz2...)"
category = "main"
optional = false
python-versions = ">=3.6,<4.0"
[package.extras]
all = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage", "requests"]
azure = ["azure-common", "azure-core", "azure-storage-blob"]
gcs = ["google-cloud-storage"]
http = ["requests"]
s3 = ["boto3"]
test = ["azure-common", "azure-core", "azure-storage-blob", "boto3", "google-cloud-storage", "moto[server] (==1.3.14)", "parameterizedtestcase", "paramiko", "pathlib2", "pytest", "pytest-rerunfailures", "requests", "responses"]
webhdfs = ["requests"]
[[package]]
name = "tqdm"
version = "4.62.3"
description = "Fast, Extensible Progress Meter"
category = "main"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7"
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[package.extras]
dev = ["py-make (>=0.1.0)", "twine", "wheel"]
notebook = ["ipywidgets (>=6)"]
telegram = ["requests"]
[metadata]
lock-version = "1.1"
python-versions = "^3.8"
content-hash = "6333948eeefa7654012a99d8d3d61b29b30094ff31d67d891e192488454bf7a3"
[metadata.files]
colorama = [
{file = "colorama-0.4.4-py2.py3-none-any.whl", hash = "sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2"},
{file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"},
]
gensim = [
{file = "gensim-4.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:1ff0171ec5b7473facb1441426a6b41e8ec4599fd62e1820868ab965804e3d4c"},
{file = "gensim-4.1.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:3e34cfe767a8db52812826136d6e94863081fd1456726bd1ff40b4e25965fbb5"},
{file = "gensim-4.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:804e18d76d9034bc70f93b8407680b7956c99f03914e85e31dd8b296623dc0ed"},
{file = "gensim-4.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:d812dcdf2bfaf527a09ecf867303c117d6f497233db08f1d8209ffb71aaf3fdb"},
{file = "gensim-4.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:615d2a57efeaf97cd847e95f83b2fc168f9d22f4922aaa9cda9350f05648560c"},
{file = "gensim-4.1.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8bd89b791e6729a9dd1c345d32fc9e2ba51348cf54fbaa8d49259eb92e719084"},
{file = "gensim-4.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d0bf4074ff467a0b22c5e4cecfb7d12afcca6246dac515d5a06ab7e4c775f8e"},
{file = "gensim-4.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:36222dbf89aa57909131fc79654e92c918e1075b9ebd00532c3d23b76b6ce8eb"},
{file = "gensim-4.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:58d9ab570b225f3aafec55286864560a25701f7446af9dbc0ad51aa5f61712fa"},
{file = "gensim-4.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f6133b0f76d0c262231465936cded8920df88edf079df1e7bfe95f049ad8301e"},
{file = "gensim-4.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4b4ca5d1408e2d89e0ac45cd8a432abf747d5b62eea68e6dccacefa03d759c9"},
{file = "gensim-4.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:66a9574f9f2bbf8fd8e6d7a120443793b96bfd4c153b41f266b6299aa3362de7"},
{file = "gensim-4.1.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7bbc3d6c80c9fd97b89dfee2f44562b75542f72141f5fbacb91334597485f55c"},
{file = "gensim-4.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8c6a4b271f4d554fdf14b9cb34d4da6cde7084f7f581c5c6dd5fcac648db35be"},
{file = "gensim-4.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea47999c7da97472fce8f0831a63e4089d85539c8e0cdb895f087aea1eed4a3b"},
{file = "gensim-4.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:39139be83c3128e234216189a094f959ac2b052a808911b0b56d980d5f96981f"},
{file = "gensim-4.1.2.tar.gz", hash = "sha256:1932c257de4eccbb64cc40d46e8577a25f5f47b94b96019a969fb36150f11d15"},
]
joblib = [
{file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"},
{file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"},
]
networkx = [
{file = "networkx-2.6.3-py3-none-any.whl", hash = "sha256:80b6b89c77d1dfb64a4c7854981b60aeea6360ac02c6d4e4913319e0a313abef"},
{file = "networkx-2.6.3.tar.gz", hash = "sha256:c0946ed31d71f1b732b5aaa6da5a0388a345019af232ce2f49c766e2d6795c51"},
]
numpy = [
{file = "numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3d22662b4b10112c545c91a0741f2436f8ca979ab3d69d03d19322aa970f9695"},
{file = "numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:11a1f3816ea82eed4178102c56281782690ab5993251fdfd75039aad4d20385f"},
{file = "numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5dc65644f75a4c2970f21394ad8bea1a844104f0fe01f278631be1c7eae27226"},
{file = "numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42c16cec1c8cf2728f1d539bd55aaa9d6bb48a7de2f41eb944697293ef65a559"},
{file = "numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a97e82c39d9856fe7d4f9b86d8a1e66eff99cf3a8b7ba48202f659703d27c46f"},
{file = "numpy-1.22.0-cp310-cp310-win_amd64.whl", hash = "sha256:e41e8951749c4b5c9a2dc5fdbc1a4eec6ab2a140fdae9b460b0f557eed870f4d"},
{file = "numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:bece0a4a49e60e472a6d1f70ac6cdea00f9ab80ff01132f96bd970cdd8a9e5a9"},
{file = "numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:818b9be7900e8dc23e013a92779135623476f44a0de58b40c32a15368c01d471"},
{file = "numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:47ee7a839f5885bc0c63a74aabb91f6f40d7d7b639253768c4199b37aede7982"},
{file = "numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a024181d7aef0004d76fb3bce2a4c9f2e67a609a9e2a6ff2571d30e9976aa383"},
{file = "numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f71d57cc8645f14816ae249407d309be250ad8de93ef61d9709b45a0ddf4050c"},
{file = "numpy-1.22.0-cp38-cp38-win32.whl", hash = "sha256:283d9de87c0133ef98f93dfc09fad3fb382f2a15580de75c02b5bb36a5a159a5"},
{file = "numpy-1.22.0-cp38-cp38-win_amd64.whl", hash = "sha256:2762331de395739c91f1abb88041f94a080cb1143aeec791b3b223976228af3f"},
{file = "numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:76ba7c40e80f9dc815c5e896330700fd6e20814e69da9c1267d65a4d051080f1"},
{file = "numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0cfe07133fd00b27edee5e6385e333e9eeb010607e8a46e1cd673f05f8596595"},
{file = "numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6ed0d073a9c54ac40c41a9c2d53fcc3d4d4ed607670b9e7b0de1ba13b4cbfe6f"},
{file = "numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41388e32e40b41dd56eb37fcaa7488b2b47b0adf77c66154d6b89622c110dfe9"},
{file = "numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b55b953a1bdb465f4dc181758570d321db4ac23005f90ffd2b434cc6609a63dd"},
{file = "numpy-1.22.0-cp39-cp39-win32.whl", hash = "sha256:5a311ee4d983c487a0ab546708edbdd759393a3dc9cd30305170149fedd23c88"},
{file = "numpy-1.22.0-cp39-cp39-win_amd64.whl", hash = "sha256:a97a954a8c2f046d3817c2bce16e3c7e9a9c2afffaf0400f5c16df5172a67c9c"},
{file = "numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb02929b0d6bfab4c48a79bd805bd7419114606947ec8284476167415171f55b"},
{file = "numpy-1.22.0.zip", hash = "sha256:a955e4128ac36797aaffd49ab44ec74a71c11d6938df83b1285492d277db5397"},
]
scipy = [
{file = "scipy-1.6.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a15a1f3fc0abff33e792d6049161b7795909b40b97c6cc2934ed54384017ab76"},
{file = "scipy-1.6.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:e79570979ccdc3d165456dd62041d9556fb9733b86b4b6d818af7a0afc15f092"},
{file = "scipy-1.6.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:a423533c55fec61456dedee7b6ee7dce0bb6bfa395424ea374d25afa262be261"},
{file = "scipy-1.6.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:33d6b7df40d197bdd3049d64e8e680227151673465e5d85723b3b8f6b15a6ced"},
{file = "scipy-1.6.1-cp37-cp37m-win32.whl", hash = "sha256:6725e3fbb47da428794f243864f2297462e9ee448297c93ed1dcbc44335feb78"},
{file = "scipy-1.6.1-cp37-cp37m-win_amd64.whl", hash = "sha256:5fa9c6530b1661f1370bcd332a1e62ca7881785cc0f80c0d559b636567fab63c"},
{file = "scipy-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bd50daf727f7c195e26f27467c85ce653d41df4358a25b32434a50d8870fc519"},
{file = "scipy-1.6.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:f46dd15335e8a320b0fb4685f58b7471702234cba8bb3442b69a3e1dc329c345"},
{file = "scipy-1.6.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0e5b0ccf63155d90da576edd2768b66fb276446c371b73841e3503be1d63fb5d"},
{file = "scipy-1.6.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:2481efbb3740977e3c831edfd0bd9867be26387cacf24eb5e366a6a374d3d00d"},
{file = "scipy-1.6.1-cp38-cp38-win32.whl", hash = "sha256:68cb4c424112cd4be886b4d979c5497fba190714085f46b8ae67a5e4416c32b4"},
{file = "scipy-1.6.1-cp38-cp38-win_amd64.whl", hash = "sha256:5f331eeed0297232d2e6eea51b54e8278ed8bb10b099f69c44e2558c090d06bf"},
{file = "scipy-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0c8a51d33556bf70367452d4d601d1742c0e806cd0194785914daf19775f0e67"},
{file = "scipy-1.6.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:83bf7c16245c15bc58ee76c5418e46ea1811edcc2e2b03041b804e46084ab627"},
{file = "scipy-1.6.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:794e768cc5f779736593046c9714e0f3a5940bc6dcc1dba885ad64cbfb28e9f0"},
{file = "scipy-1.6.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:5da5471aed911fe7e52b86bf9ea32fb55ae93e2f0fac66c32e58897cfb02fa07"},
{file = "scipy-1.6.1-cp39-cp39-win32.whl", hash = "sha256:8e403a337749ed40af60e537cc4d4c03febddcc56cd26e774c9b1b600a70d3e4"},
{file = "scipy-1.6.1-cp39-cp39-win_amd64.whl", hash = "sha256:a5193a098ae9f29af283dcf0041f762601faf2e595c0db1da929875b7570353f"},
{file = "scipy-1.6.1.tar.gz", hash = "sha256:c4fceb864890b6168e79b0e714c585dbe2fd4222768ee90bc1aa0f8218691b11"},
]
smart-open = [
{file = "smart_open-5.2.1-py3-none-any.whl", hash = "sha256:71d14489da58b60ce12fc3ecb823facc59a8b23cd1b58edb97175640350d3a62"},
{file = "smart_open-5.2.1.tar.gz", hash = "sha256:75abf758717a92a8f53aa96953f0c245c8cedf8e1e4184903db3659b419d4c17"},
]
tqdm = [
{file = "tqdm-4.62.3-py2.py3-none-any.whl", hash = "sha256:8dd278a422499cd6b727e6ae4061c40b48fce8b76d1ccbf5d34fca9b7f925b0c"},
{file = "tqdm-4.62.3.tar.gz", hash = "sha256:d359de7217506c9851b7869f3708d8ee53ed70a1b8edbba4dbcb47442592920d"},
]