-
Notifications
You must be signed in to change notification settings - Fork 0
/
vector_com.c
545 lines (483 loc) · 20.6 KB
/
vector_com.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#include "vector_com.h"
#include <assert.h>
#include <stdalign.h>
#include <stdbool.h>
#include <stdlib.h>
#include "prgs.h"
#include "small_vole.h"
#include "util.h"
// TODO: probably can ditch most of the "restrict"s in inlined functions.
#define TREE_CHUNK_SIZE (PRG_TREE_PREFERRED_WIDTH / 2)
#define TREE_CHUNK_SIZE_SHIFT (PRG_TREE_PREFERRED_WIDTH_SHIFT - 1)
#define LEAF_CHUNK_SIZE (PRG_LEAF_PREFERRED_WIDTH / 2)
#define LEAF_CHUNK_SIZE_SHIFT (PRG_LEAF_PREFERRED_WIDTH_SHIFT - 1)
#define MAX_CHUNK_SIZE_SHIFT \
(LEAF_CHUNK_SIZE_SHIFT > TREE_CHUNK_SIZE_SHIFT ? LEAF_CHUNK_SIZE_SHIFT : TREE_CHUNK_SIZE_SHIFT)
#define MAX_CHUNK_SIZE (LEAF_CHUNK_SIZE > TREE_CHUNK_SIZE ? LEAF_CHUNK_SIZE : TREE_CHUNK_SIZE)
static ALWAYS_INLINE void copy_prg_output(
bool leaf, size_t n, size_t stretch, uint32_t j, uint32_t num_blocks, size_t num_bytes,
const prg_tree_block* prg_output_tree, const prg_leaf_block* prg_output_leaf,
block_secpar* output)
{
size_t prg_block_size = !leaf ? sizeof(prg_tree_block) : sizeof(prg_leaf_block);
for (size_t k = 0; k < n; ++k)
memcpy(((unsigned char*) &output[stretch * k]) + j * prg_block_size,
!leaf ? (void*) &prg_output_tree[num_blocks * k]
: (void*) &prg_output_leaf[num_blocks * k], num_bytes);
}
// Take each of n block_secpars from input and expand it into stretch adjacent blocks in output.
// fixed_key_tree, fixed_key_leaf is only used for PRGs based on fixed-key Rijndael. Works for
// n <= TREE_CHUNK_SIZE (or LEAF_CHUNK_SIZE if leaf).
static ALWAYS_INLINE void expand_chunk(
bool leaf, size_t n, uint32_t stretch, block128 iv,
const prg_tree_fixed_key* restrict fixed_key_tree,
const prg_leaf_fixed_key* restrict fixed_key_leaf,
const block_secpar* restrict input, block_secpar* restrict output)
{
assert(n <= (!leaf ? TREE_CHUNK_SIZE : LEAF_CHUNK_SIZE));
block_secpar keys[MAX_CHUNK_SIZE];
prg_tree_iv ivs_tree[TREE_CHUNK_SIZE];
prg_leaf_iv ivs_leaf[LEAF_CHUNK_SIZE];
prg_tree_key prgs_tree[TREE_CHUNK_SIZE];
prg_leaf_key prgs_leaf[LEAF_CHUNK_SIZE];
prg_tree_block prg_output_tree[TREE_CHUNK_SIZE * 3];
prg_leaf_block prg_output_leaf[LEAF_CHUNK_SIZE * 3];
memcpy(&keys[0], input, n * sizeof(block_secpar));
for (size_t i = 0; i < n; ++i)
{
memcpy(&ivs_tree[i], &iv, sizeof(ivs_tree[i]));
memcpy(&ivs_leaf[i], &iv, sizeof(ivs_leaf[i]));
}
size_t prg_block_size = !leaf ? sizeof(prg_tree_block) : sizeof(prg_leaf_block);
uint32_t blocks_per_key = (stretch * sizeof(block_secpar) + prg_block_size - 1) / prg_block_size;
size_t bytes_extra_per_key = blocks_per_key * prg_block_size - stretch * sizeof(block_secpar);
assert(blocks_per_key >= 2);
uint32_t num_blocks = blocks_per_key % 2 ? 3 : 2;
if (!leaf)
prg_tree_init(&prgs_tree[0], fixed_key_tree, &keys[0], &ivs_tree[0],
n, num_blocks, 0, &prg_output_tree[0]);
else
prg_leaf_init(&prgs_leaf[0], fixed_key_leaf, &keys[0], &ivs_leaf[0],
n, num_blocks, 0, &prg_output_leaf[0]);
assert(blocks_per_key > num_blocks || bytes_extra_per_key == 0);
copy_prg_output(leaf, n, stretch, 0, num_blocks, num_blocks * prg_block_size,
prg_output_tree, prg_output_leaf, output);
for (uint32_t j = num_blocks; j < blocks_per_key; j += num_blocks)
{
num_blocks = 2;
if (!leaf)
prg_tree_gen(&prgs_tree[0], fixed_key_tree, n, num_blocks, j, &prg_output_tree[0]);
else
prg_leaf_gen(&prgs_leaf[0], fixed_key_leaf, n, num_blocks, j, &prg_output_leaf[0]);
if (j + num_blocks < blocks_per_key || bytes_extra_per_key == 0)
copy_prg_output(leaf, n, stretch, j, num_blocks, num_blocks * prg_block_size,
prg_output_tree, prg_output_leaf, output);
else
copy_prg_output(leaf, n, stretch, j, num_blocks,
num_blocks * prg_block_size - bytes_extra_per_key,
prg_output_tree, prg_output_leaf, output);
}
}
// Allow n to be hardcoded by the compiler into expand_chunk:
#define DEF_EXPAND_CHUNK_N(n) \
static void expand_chunk_n_##n( \
block128 iv, const prg_tree_fixed_key* restrict fixed_key_tree, \
const block_secpar* restrict input, block_secpar* restrict output) \
{ \
if (n <= TREE_CHUNK_SIZE) \
expand_chunk(false, n, 2, iv, fixed_key_tree, NULL, input, output); \
}
// Most of these will be unused, and so removed by the compiler.
static_assert(TREE_CHUNK_SIZE <= 32, "");
DEF_EXPAND_CHUNK_N(1)
DEF_EXPAND_CHUNK_N(2)
DEF_EXPAND_CHUNK_N(3)
DEF_EXPAND_CHUNK_N(4)
DEF_EXPAND_CHUNK_N(5)
DEF_EXPAND_CHUNK_N(6)
DEF_EXPAND_CHUNK_N(7)
DEF_EXPAND_CHUNK_N(8)
DEF_EXPAND_CHUNK_N(9)
DEF_EXPAND_CHUNK_N(10)
DEF_EXPAND_CHUNK_N(11)
DEF_EXPAND_CHUNK_N(12)
DEF_EXPAND_CHUNK_N(13)
DEF_EXPAND_CHUNK_N(14)
DEF_EXPAND_CHUNK_N(15)
DEF_EXPAND_CHUNK_N(16)
DEF_EXPAND_CHUNK_N(17)
DEF_EXPAND_CHUNK_N(18)
DEF_EXPAND_CHUNK_N(19)
DEF_EXPAND_CHUNK_N(20)
DEF_EXPAND_CHUNK_N(21)
DEF_EXPAND_CHUNK_N(22)
DEF_EXPAND_CHUNK_N(23)
DEF_EXPAND_CHUNK_N(24)
DEF_EXPAND_CHUNK_N(25)
DEF_EXPAND_CHUNK_N(26)
DEF_EXPAND_CHUNK_N(27)
DEF_EXPAND_CHUNK_N(28)
DEF_EXPAND_CHUNK_N(29)
DEF_EXPAND_CHUNK_N(30)
DEF_EXPAND_CHUNK_N(31)
DEF_EXPAND_CHUNK_N(32)
// Use a switch to select which size. The case should always be resolved at compile time. This is
// just a way to get the compiler to select the right function to call.
static ALWAYS_INLINE void expand_chunk_switch( \
size_t n, block128 iv, const prg_tree_fixed_key* restrict fixed_key_tree,
const block_secpar* restrict input, block_secpar* restrict output) \
{ \
switch (n)
{
#define EXPAND_CHUNK_SWITCH_CASE(n) \
case n: \
expand_chunk_n_##n(iv, fixed_key_tree, input, output); \
break;
EXPAND_CHUNK_SWITCH_CASE(1)
EXPAND_CHUNK_SWITCH_CASE(2)
EXPAND_CHUNK_SWITCH_CASE(3)
EXPAND_CHUNK_SWITCH_CASE(4)
EXPAND_CHUNK_SWITCH_CASE(5)
EXPAND_CHUNK_SWITCH_CASE(6)
EXPAND_CHUNK_SWITCH_CASE(7)
EXPAND_CHUNK_SWITCH_CASE(8)
EXPAND_CHUNK_SWITCH_CASE(9)
EXPAND_CHUNK_SWITCH_CASE(10)
EXPAND_CHUNK_SWITCH_CASE(11)
EXPAND_CHUNK_SWITCH_CASE(12)
EXPAND_CHUNK_SWITCH_CASE(13)
EXPAND_CHUNK_SWITCH_CASE(14)
EXPAND_CHUNK_SWITCH_CASE(15)
EXPAND_CHUNK_SWITCH_CASE(16)
EXPAND_CHUNK_SWITCH_CASE(17)
EXPAND_CHUNK_SWITCH_CASE(18)
EXPAND_CHUNK_SWITCH_CASE(19)
EXPAND_CHUNK_SWITCH_CASE(20)
EXPAND_CHUNK_SWITCH_CASE(21)
EXPAND_CHUNK_SWITCH_CASE(22)
EXPAND_CHUNK_SWITCH_CASE(23)
EXPAND_CHUNK_SWITCH_CASE(24)
EXPAND_CHUNK_SWITCH_CASE(25)
EXPAND_CHUNK_SWITCH_CASE(26)
EXPAND_CHUNK_SWITCH_CASE(27)
EXPAND_CHUNK_SWITCH_CASE(28)
EXPAND_CHUNK_SWITCH_CASE(29)
EXPAND_CHUNK_SWITCH_CASE(30)
EXPAND_CHUNK_SWITCH_CASE(31)
EXPAND_CHUNK_SWITCH_CASE(32)
default:
assert(0 < n && n <= 32);
}
}
static void expand_chunk_leaf_n_leaf_chunk_size(
block128 iv, const prg_leaf_fixed_key* restrict fixed_key_leaf,
const block_secpar* restrict input, block_secpar* restrict output)
{
expand_chunk(true, LEAF_CHUNK_SIZE, 3, iv, NULL, fixed_key_leaf, input, output);
}
#define TREES_IN_FOREST(verifier) ((verifier) ? SECURITY_PARAM : BITS_PER_WITNESS)
#define PARENT(x, verifier) (((x) - TREES_IN_FOREST(verifier)) / 2)
#define FIRST_CHILD(x, verifier) (2 * (x) + TREES_IN_FOREST(verifier))
// Equivalent to FIRST_CHILD(..., verifier) iterated d times, starting from x.
#define FIRST_DESCENDENT_DEPTH(x, d, verifier) \
((((x) + TREES_IN_FOREST(verifier)) << (d)) - TREES_IN_FOREST(verifier))
// Duplicate the same function many times for recursion, so that it will all get inlined.
#define EXPAND_ROOTS_RECURSION(n, next) \
static ALWAYS_INLINE void expand_roots_##n( \
bool partial, block128 iv, const prg_tree_fixed_key* restrict fixed_key_tree, \
block_secpar* restrict forest, size_t i) \
{ \
if (n >= TREE_CHUNK_SIZE_SHIFT) \
return; \
size_t this_chunk_size = partial ? TREES_IN_FOREST(false) % TREE_CHUNK_SIZE : TREE_CHUNK_SIZE; \
expand_chunk_switch(this_chunk_size, iv, fixed_key_tree, &forest[i], &forest[FIRST_CHILD(i, false)]); \
next(partial, iv, fixed_key_tree, forest, FIRST_CHILD(i, false)); \
next(partial, iv, fixed_key_tree, forest, FIRST_CHILD(i, false) + this_chunk_size); \
}
#define FINISHED_RECURSION(a,b,c,d,e) do {} while (0)
static_assert(TREE_CHUNK_SIZE_SHIFT <= 5, "");
EXPAND_ROOTS_RECURSION(4, FINISHED_RECURSION)
EXPAND_ROOTS_RECURSION(3, expand_roots_4)
EXPAND_ROOTS_RECURSION(2, expand_roots_3)
EXPAND_ROOTS_RECURSION(1, expand_roots_2)
EXPAND_ROOTS_RECURSION(0, expand_roots_1)
#undef FINISHED_RECURSION
static void write_leaves(
block128 iv, const prg_leaf_fixed_key* restrict fixed_key_leaf,
block_secpar* restrict starting_node, size_t starting_leaf_idx, size_t* permuted_leaf_idx,
block_secpar* restrict leaves, block_2secpar* restrict hashed_leaves)
{
size_t perm_leaf_idx = *permuted_leaf_idx;
size_t leaf_idx = starting_leaf_idx;
for (size_t j = 0; j < MAX_CHUNK_SIZE; j += LEAF_CHUNK_SIZE)
{
block_secpar prg_output[3 * LEAF_CHUNK_SIZE];
expand_chunk_leaf_n_leaf_chunk_size(iv, fixed_key_leaf, &starting_node[j], prg_output);
for (size_t k = 0; k < LEAF_CHUNK_SIZE; k += VOLE_WIDTH)
{
// Simplest to compute permuted_leaf_idx in each iteration, but
// vole_permute_key_index leaves the last VOLE_WIDTH_SHIFT bits unchanged, so it
// only needs to be called once every VOLE_WIDTH blocks.
for (size_t l = 0; l < VOLE_WIDTH && l < LEAF_CHUNK_SIZE; l++)
{
leaves[perm_leaf_idx] = prg_output[3 * (k + l)];
memcpy(&hashed_leaves[leaf_idx], &prg_output[3 * (k + l) + 1], sizeof(block_2secpar));
perm_leaf_idx ^= vole_permute_inv_increment(leaf_idx, 1);
leaf_idx++;
}
}
}
*permuted_leaf_idx = perm_leaf_idx;
}
static ALWAYS_INLINE void expand_tree(
bool verifier, size_t delta, block128 iv, const prg_tree_fixed_key* restrict fixed_key_tree,
const prg_leaf_fixed_key* restrict fixed_key_leaf, block_secpar* restrict forest,
unsigned int height, size_t root, size_t starting_leaf_idx,
block_secpar* restrict leaves, block_2secpar* restrict hashed_leaves)
{
size_t permuted_leaf_idx = vole_permute_key_index_inv(starting_leaf_idx ^ delta);
// Loop over blocks of size max(TREE_CHUNK_SIZE, LEAF_CHUNK_SIZE).
size_t pow_height = (size_t) 1 << height;
for (size_t chunk = 0; chunk < pow_height;
chunk += MAX_CHUNK_SIZE / TREE_CHUNK_SIZE, starting_leaf_idx += TREE_CHUNK_SIZE)
{
size_t ancestor;
for (size_t i = chunk; i < chunk + (MAX_CHUNK_SIZE / TREE_CHUNK_SIZE) && i < pow_height; ++i)
{
unsigned int ancestor_height = count_trailing_zeros(i | pow_height);
unsigned int ancestor_depth = height - ancestor_height;
ancestor = FIRST_DESCENDENT_DEPTH(root, ancestor_depth, verifier) +
TREE_CHUNK_SIZE * (i >> ancestor_height);
for (int d = ancestor_height - 1; d >= 0; --d)
{
size_t first_child = FIRST_CHILD(ancestor, verifier);
expand_chunk_switch(TREE_CHUNK_SIZE, iv, fixed_key_tree,
&forest[ancestor], &forest[first_child]);
ancestor = first_child;
}
}
if (chunk + (MAX_CHUNK_SIZE / TREE_CHUNK_SIZE) <= pow_height)
{
// We've just finished a block of size MAX_CHUNK_SIZE (at least LEAF_CHUNK_SIZE), so
// apply the leaf prgs and write to leaves and hashed_leaves.
size_t starting_node = ancestor + TREE_CHUNK_SIZE - MAX_CHUNK_SIZE;
write_leaves(iv, fixed_key_leaf, &forest[starting_node], starting_leaf_idx,
&permuted_leaf_idx, leaves, hashed_leaves);
}
}
}
void vector_commit(
const block_secpar seed, block128 iv,
block_secpar* restrict forest, block_secpar* restrict leaves,
block_2secpar* restrict hashed_leaves)
{
block_secpar fixed_key_iv = block_secpar_set_zero();
memcpy(&fixed_key_iv, &iv, sizeof(iv));
prg_tree_fixed_key fixed_key_tree;
prg_leaf_fixed_key fixed_key_leaf;
init_fixed_keys(&fixed_key_tree, &fixed_key_leaf, fixed_key_iv);
block_secpar roots[BITS_PER_WITNESS];
expand_chunk(false, 1, BITS_PER_WITNESS, iv, &fixed_key_tree, NULL, &seed, &roots[0]);
vector_commit_from_roots(roots, iv, forest, leaves, hashed_leaves,
&fixed_key_tree, &fixed_key_leaf);
}
void vector_commit_from_roots(
block_secpar* roots, block128 iv, block_secpar* restrict forest,
block_secpar* restrict leaves, block_2secpar* restrict hashed_leaves,
const prg_tree_fixed_key* fixed_key_tree, const prg_leaf_fixed_key* fixed_key_leaf)
{
memcpy(forest, roots, TREES_IN_FOREST(false) * sizeof(block_secpar));
// First expand each tree far enough to have TREE_CHUNK_SIZE nodes.
static_assert(VOLE_MIN_K >= TREE_CHUNK_SIZE_SHIFT, "");
for (size_t i = 0; i + TREE_CHUNK_SIZE <= TREES_IN_FOREST(false); i += TREE_CHUNK_SIZE)
expand_roots_0(false, iv, fixed_key_tree, forest, i);
size_t remaining = TREES_IN_FOREST(false) % TREE_CHUNK_SIZE;
if (remaining)
expand_roots_0(true, iv, fixed_key_tree, forest, TREES_IN_FOREST(false) - remaining);
// Expand each tree, now that they are each 1 chunk in size.
for (size_t i = 0; i < BITS_PER_WITNESS; ++i)
{
// First VOLES_MAX_K trees are 1 taller.
unsigned int height = i < VOLES_MAX_K ? VOLE_MAX_K : VOLE_MIN_K;
size_t root = FIRST_DESCENDENT_DEPTH(i, TREE_CHUNK_SIZE_SHIFT, false);
expand_tree(false, 0, iv, fixed_key_tree, fixed_key_leaf, forest,
height - TREE_CHUNK_SIZE_SHIFT, root, 0, leaves, hashed_leaves);
size_t pow_height = (size_t) 1 << height;
leaves += pow_height;
hashed_leaves += pow_height;
}
}
void vector_open(
const block_secpar* restrict forest, const block_2secpar* restrict hashed_leaves,
const uint8_t* restrict delta, unsigned char* restrict opening)
{
for (size_t i = 0; i < BITS_PER_WITNESS; ++i)
{
unsigned int depth = i < VOLES_MAX_K ? VOLE_MAX_K : VOLE_MIN_K;
size_t node = FIRST_CHILD(i, false);
size_t leaf_idx = 0;
for (unsigned int d = 1; d <= depth; ++d)
{
unsigned int hole = delta[depth - d] & 1;
leaf_idx = 2*leaf_idx + hole;
memcpy(opening, &forest[node + (1 - hole)], sizeof(block_secpar));
opening += sizeof(block_secpar);
node = FIRST_CHILD(node + hole, false);
}
memcpy(opening, &hashed_leaves[leaf_idx], sizeof(block_2secpar));
opening += sizeof(block_2secpar);
delta += depth;
hashed_leaves += (1 << depth);
}
}
#define EXPAND_VERIFIER_SUBTREES_RECURSION(n, next) \
static ALWAYS_INLINE void expand_verifier_subtrees_##n( \
size_t this_chunk_size, block128 iv, const prg_tree_fixed_key* restrict fixed_key_tree, \
block_secpar* restrict forest, size_t i, size_t node) \
{ \
if (n >= TREE_CHUNK_SIZE_SHIFT) \
return; \
size_t level_lim = (TREES_IN_FOREST(true) - (n + 1) * BITS_PER_WITNESS) << n; \
if (i >= level_lim) \
return; \
if (i + this_chunk_size > level_lim) \
{ \
this_chunk_size = level_lim % TREE_CHUNK_SIZE; \
assert(this_chunk_size == level_lim - i); /* All preceding calls were on whole chunks. */ \
size_t child = FIRST_CHILD(node, true); \
expand_chunk_switch(this_chunk_size, iv, fixed_key_tree, &forest[node], &forest[child]); \
size_t output_size = 2 * this_chunk_size; \
i *= 2; \
if (output_size >= TREE_CHUNK_SIZE) \
{ \
next(TREE_CHUNK_SIZE, iv, fixed_key_tree, forest, i, child); \
i += TREE_CHUNK_SIZE; \
child += TREE_CHUNK_SIZE; \
output_size -= TREE_CHUNK_SIZE; \
} \
next(output_size, iv, fixed_key_tree, forest, i, child); \
} \
else \
{ \
/* this_chunk_size must be TREE_CHUNK_SIZE here, because at most the last call is not on a */ \
/* whole chunk, and that call will be the one that hits the level_lim limit above. */ \
size_t child = FIRST_CHILD(node, true); \
expand_chunk_switch(TREE_CHUNK_SIZE, iv, fixed_key_tree, &forest[node], &forest[child]); \
next(TREE_CHUNK_SIZE, iv, fixed_key_tree, forest, 2*i, child); \
next(TREE_CHUNK_SIZE, iv, fixed_key_tree, forest, 2*i + TREE_CHUNK_SIZE, child + TREE_CHUNK_SIZE); \
} \
}
#define FINISHED_RECURSION(a,b,c,d,e,f) do {} while (0)
static_assert(TREE_CHUNK_SIZE_SHIFT <= 5, "");
EXPAND_VERIFIER_SUBTREES_RECURSION(4, FINISHED_RECURSION)
EXPAND_VERIFIER_SUBTREES_RECURSION(3, expand_verifier_subtrees_4)
EXPAND_VERIFIER_SUBTREES_RECURSION(2, expand_verifier_subtrees_3)
EXPAND_VERIFIER_SUBTREES_RECURSION(1, expand_verifier_subtrees_2)
EXPAND_VERIFIER_SUBTREES_RECURSION(0, expand_verifier_subtrees_1)
#undef FINISHED_RECURSION
// Reorder the keys in the opening, to group them by height.
static ALWAYS_INLINE void reorder_verifier_keys(
const unsigned char* opening, block_secpar* reordered_keys)
{
block_secpar* dst = reordered_keys;
for (size_t i = 0; i < VOLE_MAX_K; ++i)
{
size_t src_idx = i;
for (size_t j = 0; j < VOLES_MAX_K; ++j, ++dst, src_idx += VOLE_MAX_K + 2)
memcpy(dst, &opening[src_idx * sizeof(block_secpar)], sizeof(block_secpar));
if (i >= VOLE_MAX_K - VOLE_MIN_K)
{
src_idx -= VOLE_MAX_K - VOLE_MIN_K;
for (size_t j = 0; j < VOLES_MIN_K; ++j, ++dst, src_idx += VOLE_MIN_K + 2)
memcpy(dst, &opening[src_idx * sizeof(block_secpar)], sizeof(block_secpar));
}
}
}
void vector_verify(
block128 iv, const unsigned char* restrict opening, const uint8_t* restrict delta,
block_secpar* restrict leaves, block_2secpar* restrict hashed_leaves)
{
block_secpar fixed_key_iv = block_secpar_set_zero();
memcpy(&fixed_key_iv, &iv, sizeof(iv));
prg_tree_fixed_key fixed_key_tree;
prg_leaf_fixed_key fixed_key_leaf;
init_fixed_keys(&fixed_key_tree, &fixed_key_leaf, fixed_key_iv);
block_secpar* verifier_subtrees = aligned_alloc(
alignof(block_secpar),
TREES_IN_FOREST(true) * ((1 << VOLE_MAX_K) - 1) * sizeof(block_secpar));
// Need the keys in transposed order.
reorder_verifier_keys(opening, verifier_subtrees);
// Expand all subtrees from opening to depth TREE_CHUNK_SIZE_SHIFT, except for the ones too close to
// the leaves, which get expanded fewer times. Splitting it up by d like this isn't necessary,
// as the expand_verifier_subtrees_* functions already take case of splitting it up. It just
// helps the compiler to see what things are constant.
size_t i = 0;
#ifdef __GNUC__
#pragma GCC unroll (5)
#endif
for (unsigned int d = TREE_CHUNK_SIZE_SHIFT; d > 0; --d)
{
// Expand subtrees that fully use depth d.
size_t end = TREES_IN_FOREST(true) - d * BITS_PER_WITNESS;
for (; (i + TREE_CHUNK_SIZE) <= end; i += TREE_CHUNK_SIZE)
expand_verifier_subtrees_0(TREE_CHUNK_SIZE, iv, &fixed_key_tree, verifier_subtrees, i, i);
// Expand the subtree that partially reaches depth d, but also has parts that only reach d-1
// or less. But only if this subtree exists. Again, this is separated so that the compiler
// can see that take advantage of constants.
if (end % TREE_CHUNK_SIZE != 0)
{
assert(i == end - (end % TREE_CHUNK_SIZE));
expand_verifier_subtrees_0(TREE_CHUNK_SIZE, iv, &fixed_key_tree, verifier_subtrees, i, i);
i += TREE_CHUNK_SIZE;
}
}
// Fully expand each subtree.
for (i = 0; i < BITS_PER_WITNESS; ++i)
{
unsigned int tree_depth = i < VOLES_MAX_K ? VOLE_MAX_K : VOLE_MIN_K;
size_t root = i + (i < VOLES_MAX_K ? 0 : VOLES_MAX_K);
size_t this_delta = 0;
for (unsigned int d = 1; d <= tree_depth; ++d)
this_delta = 2*this_delta + (delta[tree_depth - d] & 1);
block_secpar last_chunk[MAX_CHUNK_SIZE];
for (unsigned int j = 0; j < tree_depth; ++j)
{
unsigned int height = tree_depth - 1 - j;
size_t pow_height = (size_t) 1 << height;
size_t leaf_index = (this_delta & -pow_height) ^ pow_height;
// Expand the rest of this tree, and hash the leaf nodes if there are at least
// LEAF_CHUNK_SIZE of them.
if (height >= TREE_CHUNK_SIZE_SHIFT)
{
size_t tree_chunk_root = FIRST_DESCENDENT_DEPTH(root, TREE_CHUNK_SIZE_SHIFT, true);
expand_tree(true, this_delta, iv, &fixed_key_tree, &fixed_key_leaf, verifier_subtrees,
height - TREE_CHUNK_SIZE_SHIFT, tree_chunk_root, leaf_index, leaves, hashed_leaves);
}
if (height < MAX_CHUNK_SIZE_SHIFT)
memcpy(&last_chunk[leaf_index % MAX_CHUNK_SIZE],
&verifier_subtrees[FIRST_DESCENDENT_DEPTH(root, height, true)],
sizeof(block_secpar) << height);
if (i < VOLES_MAX_K && j == 0)
root += VOLES_MAX_K;
else
root += BITS_PER_WITNESS;
}
// There's 1 leaf node we cannot compute. At least stop it from being uninitialized memory.
memset(&last_chunk[this_delta % MAX_CHUNK_SIZE], 0, sizeof(block_secpar));
// Hash the 1 remaining MAX_CHUNK_SIZE sized chunk of the tree, which didn't get hashed
// because it was too small.
size_t starting_leaf_idx = this_delta - (this_delta % MAX_CHUNK_SIZE);
size_t permuted_leaf_idx = vole_permute_key_index_inv(starting_leaf_idx ^ this_delta);
write_leaves(iv, &fixed_key_leaf, last_chunk, starting_leaf_idx, &permuted_leaf_idx, leaves, hashed_leaves);
// Currently leaves[0] and hashed_leaves[this_delta] contain garbage (specifically, PRG(0)),
// because we don't know the keys on the active path. Fix them up.
memset(&leaves[0], 0, sizeof(block_secpar));
memcpy(&hashed_leaves[this_delta], opening + tree_depth * sizeof(block_secpar), sizeof(block_2secpar));
size_t pow_tree_depth = (size_t) 1 << tree_depth;
leaves += pow_tree_depth;
hashed_leaves += pow_tree_depth;
opening += (tree_depth + 2) * sizeof(block_secpar);
delta += tree_depth;
}
free(verifier_subtrees);
}