diff --git a/README.md b/README.md index 0e83581..fc72d6d 100644 --- a/README.md +++ b/README.md @@ -18,7 +18,7 @@ We release several models pre-trained with SwAV with the hope that other researc To load our best SwAV pre-trained ResNet-50 model, simply do: ```python import torch -model = torch.hub.load('facebookresearch/swav', 'resnet50') +model = torch.hub.load('facebookresearch/swav:main', 'resnet50') ``` We provide several baseline SwAV pre-trained models with ResNet-50 architecture in torchvision format. @@ -44,9 +44,9 @@ We provide SwAV models with ResNet-50 networks where we multiply the width by a To load the corresponding backbone you can use: ```python import torch -rn50w2 = torch.hub.load('facebookresearch/swav', 'resnet50w2') -rn50w4 = torch.hub.load('facebookresearch/swav', 'resnet50w4') -rn50w5 = torch.hub.load('facebookresearch/swav', 'resnet50w5') +rn50w2 = torch.hub.load('facebookresearch/swav:main', 'resnet50w2') +rn50w4 = torch.hub.load('facebookresearch/swav:main', 'resnet50w4') +rn50w5 = torch.hub.load('facebookresearch/swav:main', 'resnet50w5') ``` | network | parameters | epochs | ImageNet top-1 acc. | url | args |