This repository has been archived by the owner on Jun 14, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathmodels.py
331 lines (244 loc) · 11.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Modified from github.com/openai/CLIP
from collections import OrderedDict
import numpy as np
import timm
import torch
from torch import nn
import losses
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class CLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
vision_width: int,
vision_model: nn.Module,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
**kwargs,
):
super().__init__()
self.context_length = context_length
self.vision_width = vision_width
self.visual = vision_model
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask(),
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.image_projection = nn.Parameter(torch.empty(vision_width, embed_dim))
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
nn.init.normal_(self.image_projection, std=self.vision_width ** -0.5)
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def encode_image(self, image):
x = self.visual(image)
x = x @ self.image_projection
return x
def encode_text(self, text):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text):
image_embed = self.encode_image(image)
text_embed = self.encode_text(text)
return {'image_embed': image_embed,
'text_embed': text_embed,
'logit_scale': self.logit_scale.exp()}
class SIMCLR(nn.Module):
def __init__(self,
# vision
vision_width: int,
vision_model: nn.Module,
# ssl
ssl_mlp_dim: int,
ssl_emb_dim: int,
**kwargs,
):
super().__init__()
self.vision_width = vision_width
self.visual = vision_model
self.image_mlp = self._build_mlp(in_dim=vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim)
def _build_mlp(self, in_dim, mlp_dim, out_dim):
return nn.Sequential(OrderedDict([
("layer1", nn.Linear(in_dim, mlp_dim)),
("bn1", nn.SyncBatchNorm(mlp_dim)),
("relu1", nn.ReLU(inplace=True)),
("layer2", nn.Linear(mlp_dim, mlp_dim)),
("bn2", nn.SyncBatchNorm(mlp_dim)),
("relu2", nn.ReLU(inplace=True)),
("layer3", nn.Linear(mlp_dim, out_dim)),
]))
def encode_image(self, image):
x = self.visual(image)
return x
def forward(self, aug1, aug2):
h1 = self.visual(aug1)
h2 = self.visual(aug2)
aug1_embed = self.image_mlp(h1)
aug2_embed = self.image_mlp(h2)
return {'aug1_embed': aug1_embed,
'aug2_embed': aug2_embed}
class SLIP(CLIP):
def __init__(self,
ssl_mlp_dim: int,
ssl_emb_dim: int,
**kwargs,
):
super().__init__(**kwargs)
self.image_mlp = self._build_mlp(in_dim=self.vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim)
def _build_mlp(self, in_dim, mlp_dim, out_dim):
return nn.Sequential(OrderedDict([
("layer1", nn.Linear(in_dim, mlp_dim)),
("bn1", nn.SyncBatchNorm(mlp_dim)),
("relu1", nn.ReLU(inplace=True)),
("layer2", nn.Linear(mlp_dim, mlp_dim)),
("bn2", nn.SyncBatchNorm(mlp_dim)),
("relu2", nn.ReLU(inplace=True)),
("layer3", nn.Linear(mlp_dim, out_dim)),
]))
def forward(self, image, text, aug1, aug2):
aug1_embed = self.image_mlp(self.visual(aug1))
aug2_embed = self.image_mlp(self.visual(aug2))
image_embed = self.encode_image(image)
text_embed = self.encode_text(text)
return {'image_embed': image_embed,
'text_embed': text_embed,
'logit_scale': self.logit_scale.exp(),
'aug1_embed': aug1_embed,
'aug2_embed': aug2_embed}
def get_loss(model, ssl_temp, ssl_scale):
if model.startswith('SLIP'):
ssl_loss = losses.SIMCLRLoss(temperature=ssl_temp)
return losses.SLIPLoss(ssl_loss, ssl_scale)
if model.startswith('CLIP'):
return losses.CLIPLoss()
if model.startswith('SIMCLR'):
return losses.SIMCLRLoss(temperature=ssl_temp)
def get_metric_names(model):
if model.startswith('SLIP'):
return ['loss', 'clip_loss', 'ssl_loss', 'clip_acc', 'ssl_acc']
elif model.startswith('CLIP'):
return ['loss', 'clip_loss', 'clip_acc']
else:
return ['loss', 'ssl_loss', 'ssl_acc']
@timm.models.registry.register_model
def vit_small_mocov3_patch16_224(**kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=12, **kwargs)
model = timm.models.vision_transformer._create_vision_transformer('vit_small_patch16_224', **model_kwargs)
return model
def CLIP_VITS16(**kwargs):
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0)
model = CLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def SIMCLR_VITS16(**kwargs):
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0)
model = SIMCLR(vision_width=384, vision_model=vision_model, **kwargs)
return model
def SLIP_VITS16(**kwargs):
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0)
model = SLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def CLIP_VITB16(**kwargs):
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0)
model = CLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def SIMCLR_VITB16(**kwargs):
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0)
model = SIMCLR(vision_width=768, vision_model=vision_model, **kwargs)
return model
def SLIP_VITB16(**kwargs):
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0)
model = SLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def CLIP_VITL16(**kwargs):
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0)
model = CLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model
def SIMCLR_VITL16(**kwargs):
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0)
model = SIMCLR(vision_width=1024, vision_model=vision_model, **kwargs)
return model
def SLIP_VITL16(**kwargs):
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0)
model = SLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408,
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs)
return model