-
Notifications
You must be signed in to change notification settings - Fork 147
/
deobfuscate.py
240 lines (208 loc) · 8.1 KB
/
deobfuscate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import argparse
from pathlib import Path
import sys
import fastBPE
import torch
from codegen_sources.model.src.logger import create_logger
from codegen_sources.model.src.utils import restore_roberta_segmentation_sentence
from codegen_sources.preprocessing import bpe_modes as modes
from codegen_sources.preprocessing.lang_processors import LangProcessor
from codegen_sources.model.src.data.dictionary import (
Dictionary,
BOS_WORD,
EOS_WORD,
PAD_WORD,
UNK_WORD,
MASK_WORD,
)
from codegen_sources.model.src.model import build_model
from codegen_sources.model.src.utils import AttrDict
SUPPORTED_LANGUAGES = ["java", "python"]
logger = create_logger(None, 0)
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description="Translate sentences")
# model
parser.add_argument("--model_path", type=str, default="", help="Model path")
parser.add_argument(
"--lang",
type=str,
default="",
help=f"Code language, should be either {', '.join(SUPPORTED_LANGUAGES[:-1])} or {SUPPORTED_LANGUAGES[-1]}",
)
parser.add_argument(
"--BPE_path",
type=str,
default=str(
Path(__file__).parents[2].joinpath("data/bpe/cpp-java-python/codes")
),
help="Path to BPE codes.",
)
parser.add_argument(
"--beam_size",
type=int,
default=1,
help="Beam size. The beams will be printed in order of decreasing likelihood.",
)
return parser
class Deobfuscator:
def __init__(self, model_path, BPE_path) -> None:
# reload model
reloaded = torch.load(model_path, map_location="cpu")
# change params of the reloaded model so that it will
# relaod its own weights and not the MLM or DOBF pretrained model
reloaded["params"]["reload_model"] = ",".join([model_path] * 2)
reloaded["params"]["lgs_mapping"] = ""
reloaded["params"]["reload_encoder_for_decoder"] = False
self.reloaded_params = AttrDict(reloaded["params"])
# build dictionary / update parameters
self.dico = Dictionary(
reloaded["dico_id2word"], reloaded["dico_word2id"], reloaded["dico_counts"]
)
assert self.reloaded_params.n_words == len(self.dico)
assert self.reloaded_params.bos_index == self.dico.index(BOS_WORD)
assert self.reloaded_params.eos_index == self.dico.index(EOS_WORD)
assert self.reloaded_params.pad_index == self.dico.index(PAD_WORD)
assert self.reloaded_params.unk_index == self.dico.index(UNK_WORD)
assert self.reloaded_params.mask_index == self.dico.index(MASK_WORD)
# build model / reload weights (in the build_model method)
encoder, decoder = build_model(self.reloaded_params, self.dico)
self.encoder = encoder[0]
self.decoder = decoder[0]
self.encoder.cuda()
self.decoder.cuda()
self.encoder.eval()
self.decoder.eval()
# reload bpe
if (
getattr(self.reloaded_params, "roberta_mode", False)
or getattr(self.reloaded_params, "tokenization_mode", "") == "roberta"
):
self.bpe_model: modes.BPEMode = modes.RobertaBPEMode()
else:
self.bpe_model = modes.FastBPEMode(
codes=os.path.abspath(BPE_path), vocab_path=None
)
def deobfuscate(
self, input, lang, n=1, beam_size=1, sample_temperature=None, device="cuda:0",
):
# Build language processors
assert lang, lang in SUPPORTED_LANGUAGES
lang_processor = LangProcessor.processors[lang](
root_folder=Path(__file__).parents[2].joinpath("tree-sitter")
)
obfuscator = lang_processor.obfuscate_code
tokenizer = lang_processor.tokenize_code
lang1 = lang + "_obfuscated"
lang2 = lang + "_dictionary"
lang1_id = self.reloaded_params.lang2id[lang1]
lang2_id = self.reloaded_params.lang2id[lang2]
assert (
lang1 in self.reloaded_params.lang2id.keys()
), f"{lang1} should be in {self.reloaded_params.lang2id.keys()}"
assert (
lang2 in self.reloaded_params.lang2id.keys()
), f"{lang2} should be in {self.reloaded_params.lang2id.keys()}"
print("Original Code:")
print(input)
input = obfuscator(input)[0]
print("Obfuscated Code:")
print(input)
with torch.no_grad():
# Convert source code to ids
tokens = [t for t in tokenizer(input)]
print(f"Tokenized {lang} function:")
print(tokens)
tokens = self.bpe_model.apply_bpe(" ".join(tokens))
tokens = self.bpe_model.repair_bpe_for_obfuscation_line(tokens)
print(f"BPE {params.lang} function:")
print(tokens)
tokens = ["</s>"] + tokens.split() + ["</s>"]
input = " ".join(tokens)
# Create torch batch
len1 = len(input.split())
len1 = torch.LongTensor(1).fill_(len1).to(device)
x1 = torch.LongTensor([self.dico.index(w) for w in input.split()]).to(
device
)[:, None]
langs1 = x1.clone().fill_(lang1_id)
# Encode
enc1 = self.encoder("fwd", x=x1, lengths=len1, langs=langs1, causal=False)
enc1 = enc1.transpose(0, 1)
if n > 1:
enc1 = enc1.repeat(n, 1, 1)
len1 = len1.expand(n)
# Decode
if beam_size == 1:
x2, len2 = self.decoder.generate(
enc1,
len1,
lang2_id,
max_len=int(
min(self.reloaded_params.max_len, 3 * len1.max().item() + 10)
),
sample_temperature=sample_temperature,
)
else:
x2, len2, _ = self.decoder.generate_beam(
enc1,
len1,
lang2_id,
max_len=int(
min(self.reloaded_params.max_len, 3 * len1.max().item() + 10)
),
early_stopping=False,
length_penalty=1.0,
beam_size=beam_size,
)
# Convert out ids to text
tok = []
for i in range(x2.shape[1]):
wid = [self.dico[x2[j, i].item()] for j in range(len(x2))][1:]
wid = wid[: wid.index(EOS_WORD)] if EOS_WORD in wid else wid
if (
getattr(self.reloaded_params, "roberta_mode", False)
or getattr(self.reloaded_params, "tokenization_mode", "")
== "roberta"
):
tok.append(restore_roberta_segmentation_sentence(" ".join(wid)))
else:
tok.append(" ".join(wid).replace("@@ ", ""))
results = []
for t in tok:
results.append(t)
return results
if __name__ == "__main__":
# generate parser / parse parameters
parser = get_parser()
params = parser.parse_args()
# check parameters
assert os.path.isfile(
params.model_path
), f"The path to the model checkpoint is incorrect: {params.model_path}"
assert os.path.isfile(
params.BPE_path
), f"The path to the BPE tokens is incorrect: {params.BPE_path}"
assert (
params.lang in SUPPORTED_LANGUAGES
), f"The source language should be in {SUPPORTED_LANGUAGES}."
# Initialize translator
deobfuscator = Deobfuscator(params.model_path, params.BPE_path)
# read input code from stdin
input = sys.stdin.read().strip()
with torch.no_grad():
output = deobfuscator.deobfuscate(
input, lang=params.lang, beam_size=params.beam_size,
)
for out in output:
print("=" * 20)
print(out)