diff --git a/benchmarl/conf/experiment/base_experiment.yaml b/benchmarl/conf/experiment/base_experiment.yaml index 89566850..30d5d0ef 100644 --- a/benchmarl/conf/experiment/base_experiment.yaml +++ b/benchmarl/conf/experiment/base_experiment.yaml @@ -87,6 +87,8 @@ evaluation_deterministic_actions: True # List of loggers to use, options are: wandb, csv, tensorboard, mflow loggers: [] +# Wandb project name +project_name: "benchmarl" # Create a json folder as part of the output in the format of marl-eval create_json: True diff --git a/benchmarl/experiment/experiment.py b/benchmarl/experiment/experiment.py index 48154e61..fa5ac129 100644 --- a/benchmarl/experiment/experiment.py +++ b/benchmarl/experiment/experiment.py @@ -94,6 +94,7 @@ class ExperimentConfig: evaluation_deterministic_actions: bool = MISSING loggers: List[str] = MISSING + project_name: str = MISSING create_json: bool = MISSING save_folder: Optional[str] = MISSING @@ -535,6 +536,7 @@ def _setup_name(self): def _setup_logger(self): self.logger = Logger( + project_name=self.config.project_name, experiment_name=self.name, folder_name=str(self.folder_name), experiment_config=self.config, diff --git a/benchmarl/experiment/logger.py b/benchmarl/experiment/logger.py index 740389fd..6ed16ae4 100644 --- a/benchmarl/experiment/logger.py +++ b/benchmarl/experiment/logger.py @@ -33,6 +33,7 @@ def __init__( model_name: str, group_map: Dict[str, List[str]], seed: int, + project_name: str, ): self.experiment_config = experiment_config self.algorithm_name = algorithm_name @@ -63,7 +64,7 @@ def __init__( experiment_name=experiment_name, wandb_kwargs={ "group": task_name, - "project": "benchmarl", + "project": project_name, "id": experiment_name, }, ) @@ -165,9 +166,11 @@ def log_evaluation( return to_log = {} json_metrics = {} + max_length_rollout_0 = 0 for group in self.group_map.keys(): # Cut the rollouts at the first done - for k, r in enumerate(rollouts): + rollouts_group = [] + for i, r in enumerate(rollouts): next_done = self._get_done(group, r) # Reduce it to batch size next_done = next_done.sum( @@ -178,19 +181,23 @@ def log_evaluation( done_index = next_done.nonzero(as_tuple=True)[0] if done_index.numel() > 0: done_index = done_index[0] - rollouts[k] = r[: done_index + 1] + r = r[: done_index + 1] + if i == 0: + max_length_rollout_0 = max(r.batch_size[0], max_length_rollout_0) + rollouts_group.append(r) returns = [ - self._get_reward(group, td).sum(0).mean().item() for td in rollouts + self._get_reward(group, td).sum(0).mean().item() + for td in rollouts_group ] json_metrics[group + "_return"] = torch.tensor( - returns, device=rollouts[0].device + returns, device=rollouts_group[0].device ) to_log.update( { f"eval/{group}/reward/episode_reward_min": min(returns), f"eval/{group}/reward/episode_reward_mean": sum(returns) - / len(rollouts), + / len(rollouts_group), f"eval/{group}/reward/episode_reward_max": max(returns), } ) @@ -223,10 +230,8 @@ def log_evaluation( ) self.log(to_log, step=step) - if video_frames is not None and rollouts[0].batch_size[0] > 1: - video_frames = np.stack( - video_frames[: rollouts[0].batch_size[0] - 1], axis=0 - ) + if video_frames is not None and max_length_rollout_0 > 1: + video_frames = np.stack(video_frames[: max_length_rollout_0 - 1], axis=0) vid = torch.tensor( np.transpose(video_frames, (0, 3, 1, 2)), dtype=torch.uint8,