-
Notifications
You must be signed in to change notification settings - Fork 50
/
configuring_sequence_model.py
46 lines (39 loc) · 1.48 KB
/
configuring_sequence_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch.nn
from benchmarl.algorithms import MappoConfig
from benchmarl.environments import VmasTask
from benchmarl.experiment import Experiment, ExperimentConfig
from benchmarl.models.common import SequenceModelConfig
from benchmarl.models.mlp import MlpConfig
if __name__ == "__main__":
model_config = SequenceModelConfig(
model_configs=[
MlpConfig.get_from_yaml(), # Loads from "benchmarl/conf/model/layers/mlp.yaml"
MlpConfig( # This one we specify ourselves
num_cells=[4], # One layer with 4 neurons
activation_class=torch.nn.Tanh, # Tanh activation
layer_class=torch.nn.Linear, # Linear layer class
),
],
intermediate_sizes=[
5
], # Nuber of intermediate outputs. List of size n_layers - 1
)
# Some basic other configs
task = VmasTask.BALANCE.get_from_yaml()
algorithm_config = MappoConfig.get_from_yaml()
experiment_config = ExperimentConfig.get_from_yaml()
critic_model_config = MlpConfig.get_from_yaml()
experiment = Experiment(
task=task,
algorithm_config=algorithm_config,
model_config=model_config,
critic_model_config=critic_model_config,
seed=0,
config=experiment_config,
)
experiment.run()