-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathlstm.py
544 lines (476 loc) · 17.9 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from __future__ import annotations
from dataclasses import dataclass, MISSING
from typing import Optional, Sequence, Type
import torch
import torch.nn.functional as F
from tensordict import TensorDict, TensorDictBase
from tensordict.utils import expand_as_right, unravel_key_list
from torch import nn
from torchrl.data.tensor_specs import Composite, Unbounded
from torchrl.modules import LSTMCell, MLP, MultiAgentMLP
from benchmarl.models.common import Model, ModelConfig
from benchmarl.utils import DEVICE_TYPING
class LSTM(torch.nn.Module):
def __init__(
self,
input_size: int,
hidden_size: int,
device: DEVICE_TYPING,
n_layers: int,
dropout: float,
bias: bool,
time_dim: int = -2,
):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.device = device
self.time_dim = time_dim
self.n_layers = n_layers
self.dropout = dropout
self.bias = bias
self.lstms = torch.nn.ModuleList(
[
LSTMCell(
input_size if i == 0 else hidden_size,
hidden_size,
device=self.device,
bias=self.bias,
)
for i in range(self.n_layers)
]
)
def forward(self, input, is_init, h, c):
hs = []
h = list(h.unbind(dim=-2))
c = list(c.unbind(dim=-2))
for in_t, init_t in zip(
input.unbind(self.time_dim), is_init.unbind(self.time_dim)
):
for layer in range(self.n_layers):
h[layer] = torch.where(init_t, 0, h[layer])
c[layer] = torch.where(init_t, 0, c[layer])
h[layer], c[layer] = self.lstms[layer](in_t, (h[layer], c[layer]))
if layer < self.n_layers - 1 and self.dropout:
in_t = F.dropout(h[layer], p=self.dropout, training=self.training)
else:
in_t = h[layer]
hs.append(in_t)
h_n = torch.stack(h, dim=-2)
c_n = torch.stack(c, dim=-2)
output = torch.stack(hs, self.time_dim)
return output, h_n, c_n
def get_net(input_size, hidden_size, n_layers, bias, device, dropout, compile):
lstm = LSTM(
input_size,
hidden_size,
n_layers=n_layers,
bias=bias,
device=device,
dropout=dropout,
)
if compile:
lstm = torch.compile(lstm, mode="reduce-overhead")
return lstm
class MultiAgentLSTM(torch.nn.Module):
def __init__(
self,
input_size: int,
hidden_size: int,
n_agents: int,
device: DEVICE_TYPING,
centralised: bool,
share_params: bool,
n_layers: int,
dropout: float,
bias: bool,
compile: bool,
):
super().__init__()
self.input_size = input_size
self.n_agents = n_agents
self.hidden_size = hidden_size
self.device = device
self.centralised = centralised
self.share_params = share_params
self.n_layers = n_layers
self.bias = bias
self.dropout = dropout
self.compile = compile
if self.centralised:
input_size = input_size * self.n_agents
agent_networks = [
get_net(
input_size=input_size,
hidden_size=self.hidden_size,
n_layers=self.n_layers,
bias=self.bias,
device=self.device,
dropout=self.dropout,
compile=self.compile,
)
for _ in range(self.n_agents if not self.share_params else 1)
]
self._make_params(agent_networks)
with torch.device("meta"):
self._empty_lstm = get_net(
input_size=input_size,
hidden_size=self.hidden_size,
n_layers=self.n_layers,
bias=self.bias,
device="meta",
dropout=self.dropout,
compile=self.compile,
)
# Remove all parameters
TensorDict.from_module(self._empty_lstm).data.to("meta").to_module(
self._empty_lstm
)
def forward(
self,
input,
is_init,
h_0=None,
c_0=None,
):
# Input and output always have the multiagent dimension
# Hidden states always have it apart from when it is centralized and share params
# is_init never has it
assert is_init is not None, "We need to pass is_init"
training = h_0 is None
missing_batch = False
if (
not training and len(input.shape) < 3
): # In evaluation the batch might be missing
missing_batch = True
input = input.unsqueeze(0)
h_0 = h_0.unsqueeze(0)
c_0 = c_0.unsqueeze(0)
is_init = is_init.unsqueeze(0)
if (
not training
): # In collection we emulate the sequence dimension and we have the hidden state
input = input.unsqueeze(1)
# Check input
batch = input.shape[0]
seq = input.shape[1]
assert input.shape == (batch, seq, self.n_agents, self.input_size)
if h_0 is not None: # Collection
# Set hidden to 0 when is_init
h_0 = torch.where(expand_as_right(is_init, h_0), 0, h_0)
c_0 = torch.where(expand_as_right(is_init, c_0), 0, c_0)
if not training: # If in collection emulate the sequence dimension
is_init = is_init.unsqueeze(1)
assert is_init.shape == (batch, seq, 1)
is_init = is_init.unsqueeze(-2).expand(batch, seq, self.n_agents, 1)
if h_0 is None:
if self.centralised and self.share_params:
shape = (
batch,
self.n_layers,
self.hidden_size,
)
else:
shape = (
batch,
self.n_agents,
self.n_layers,
self.hidden_size,
)
h_0 = torch.zeros(
shape,
device=self.device,
dtype=torch.float,
)
c_0 = h_0.clone()
if self.centralised:
input = input.view(batch, seq, self.n_agents * self.input_size)
is_init = is_init[..., 0, :]
output, h_n, c_n = self.run_net(input, is_init, h_0, c_0)
if self.centralised and self.share_params:
output = output.unsqueeze(-2).expand(
batch, seq, self.n_agents, self.hidden_size
)
if not training:
output = output.squeeze(1)
if missing_batch:
output = output.squeeze(0)
h_n = h_n.squeeze(0)
c_n = c_n.squeeze(0)
return output, h_n, c_n
def run_net(self, input, is_init, h_0, c_0):
if not self.share_params:
if self.centralised:
output, h_n, c_n = self.vmap_func_module(
self._empty_lstm,
(0, None, None, -3, -3),
(-2, -3, -3),
)(self.params, input, is_init, h_0, c_0)
else:
output, h_n, c_n = self.vmap_func_module(
self._empty_lstm,
(0, -2, -2, -3, -3),
(-2, -3, -3),
)(self.params, input, is_init, h_0, c_0)
else:
with self.params.to_module(self._empty_lstm):
if self.centralised:
output, h_n, c_n = self._empty_lstm(input, is_init, h_0, c_0)
else:
output, h_n, c_n = torch.vmap(
self._empty_lstm,
in_dims=(-2, -2, -3, -3),
out_dims=(-2, -3, -3),
)(input, is_init, h_0, c_0)
return output, h_n, c_n
def vmap_func_module(self, module, *args, **kwargs):
def exec_module(params, *input):
with params.to_module(module):
return module(*input)
return torch.vmap(exec_module, *args, **kwargs)
def _make_params(self, agent_networks):
if self.share_params:
self.params = TensorDict.from_module(agent_networks[0], as_module=True)
else:
self.params = TensorDict.from_modules(*agent_networks, as_module=True)
class Lstm(Model):
r"""A multi-layer Long Short-Term Memory (LSTM) RNN like the one from
`torch <https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html>`__ .
The BenchMARL LSTM accepts multiple inputs of type array: Tensors of shape ``(*batch,F)``
Where `F` is the number of features. These arrays will be concatenated along the F dimensions,
which will be processed to features of `hidden_size` by the LSTM.
Args:
hidden_size (int): The number of features in the hidden state.
num_layers (int): Number of recurrent layers. E.g., setting ``num_layers=2``
would mean stacking two lstms together to form a `stacked LSTM`,
with the second LSTM taking in outputs of the first LSTM and
computing the final results. Default: 1
bias (bool): If ``False``, then the LSTM layers do not use bias.
Default: ``True``
dropout (float): If non-zero, introduces a `Dropout` layer on the outputs of each
LSTM layer except the last layer, with dropout probability equal to
:attr:`dropout`. Default: 0
compile (bool): If ``True``, compiles underlying LSTM model. Default: ``False``
"""
def __init__(
self,
hidden_size: int,
n_layers: int,
bias: bool,
dropout: float,
compile: bool,
**kwargs,
):
super().__init__(
input_spec=kwargs.pop("input_spec"),
output_spec=kwargs.pop("output_spec"),
agent_group=kwargs.pop("agent_group"),
input_has_agent_dim=kwargs.pop("input_has_agent_dim"),
n_agents=kwargs.pop("n_agents"),
centralised=kwargs.pop("centralised"),
share_params=kwargs.pop("share_params"),
device=kwargs.pop("device"),
action_spec=kwargs.pop("action_spec"),
model_index=kwargs.pop("model_index"),
is_critic=kwargs.pop("is_critic"),
)
self.hidden_state_name_h = (
self.agent_group,
f"_hidden_lstm_h_{self.model_index}",
)
self.hidden_state_name_c = (
self.agent_group,
f"_hidden_lstm_c_{self.model_index}",
)
self.rnn_keys = unravel_key_list(
["is_init", self.hidden_state_name_c, self.hidden_state_name_h]
)
self.in_keys += self.rnn_keys
self.hidden_size = hidden_size
self.n_layers = n_layers
self.bias = bias
self.dropout = dropout
self.compile = compile
self.input_features = sum(
[spec.shape[-1] for spec in self.input_spec.values(True, True)]
)
self.output_features = self.output_leaf_spec.shape[-1]
if self.input_has_agent_dim:
self.lstm = MultiAgentLSTM(
self.input_features,
self.hidden_size,
self.n_agents,
self.device,
bias=self.bias,
n_layers=self.n_layers,
centralised=self.centralised,
share_params=self.share_params,
dropout=self.dropout,
compile=self.compile,
)
else:
self.lstm = nn.ModuleList(
[
get_net(
input_size=self.input_features,
hidden_size=self.hidden_size,
n_layers=self.n_layers,
bias=self.bias,
device=self.device,
dropout=self.dropout,
compile=self.compile,
)
for _ in range(self.n_agents if not self.share_params else 1)
]
)
mlp_net_kwargs = {
"_".join(k.split("_")[1:]): v
for k, v in kwargs.items()
if k.startswith("mlp_")
}
if self.output_has_agent_dim:
self.mlp = MultiAgentMLP(
n_agent_inputs=self.hidden_size,
n_agent_outputs=self.output_features,
n_agents=self.n_agents,
centralised=self.centralised,
share_params=self.share_params,
device=self.device,
**mlp_net_kwargs,
)
else:
self.mlp = nn.ModuleList(
[
MLP(
in_features=self.hidden_size,
out_features=self.output_features,
device=self.device,
**mlp_net_kwargs,
)
for _ in range(self.n_agents if not self.share_params else 1)
]
)
def _perform_checks(self):
super()._perform_checks()
input_shape = None
for input_key, input_spec in self.input_spec.items(True, True):
if (self.input_has_agent_dim and len(input_spec.shape) == 2) or (
not self.input_has_agent_dim and len(input_spec.shape) == 1
):
if input_shape is None:
input_shape = input_spec.shape[:-1]
else:
if input_spec.shape[:-1] != input_shape:
raise ValueError(
f"LSTM inputs should all have the same shape up to the last dimension, got {self.input_spec}"
)
else:
raise ValueError(
f"LSTM input value {input_key} from {self.input_spec} has an invalid shape, maybe you need a CNN?"
)
if self.input_has_agent_dim:
if input_shape[-1] != self.n_agents:
raise ValueError(
"If the LSTM input has the agent dimension,"
f" the second to last spec dimension should be the number of agents, got {self.input_spec}"
)
if (
self.output_has_agent_dim
and self.output_leaf_spec.shape[-2] != self.n_agents
):
raise ValueError(
"If the LSTM output has the agent dimension,"
" the second to last spec dimension should be the number of agents"
)
def _forward(self, tensordict: TensorDictBase) -> TensorDictBase:
# Gather in_key
input = torch.cat(
[
tensordict.get(in_key)
for in_key in self.in_keys
if in_key not in self.rnn_keys
],
dim=-1,
)
h_0 = tensordict.get(self.hidden_state_name_h, None)
c_0 = tensordict.get(self.hidden_state_name_c, None)
is_init = tensordict.get("is_init")
training = h_0 is None
# Has multi-agent input dimension
if self.input_has_agent_dim:
output, h_n, c_n = self.lstm(input, is_init, h_0, c_0)
if not self.output_has_agent_dim:
output = output[..., 0, :]
else: # Is a global input, this is a critic
# Check input
batch = input.shape[0]
seq = input.shape[1]
assert input.shape == (batch, seq, self.input_features)
assert is_init.shape == (batch, seq, 1)
h_0 = torch.zeros(
(batch, self.n_layers, self.hidden_size),
device=self.device,
dtype=torch.float,
)
c_0 = h_0.clone()
if self.share_params:
output, _, _ = self.lstm[0](input, is_init, h_0, c_0)
else:
outputs = []
for net in self.lstm:
output, _, _ = net(input, is_init, h_0, c_0)
outputs.append(output)
output = torch.stack(outputs, dim=-2)
# Mlp
if self.output_has_agent_dim:
output = self.mlp.forward(output)
else:
if not self.share_params:
output = torch.stack(
[net(output) for net in self.mlp],
dim=-2,
)
else:
output = self.mlp[0](output)
tensordict.set(self.out_key, output)
if not training:
tensordict.set(("next", *self.hidden_state_name_h), h_n)
tensordict.set(("next", *self.hidden_state_name_c), c_n)
return tensordict
@dataclass
class LstmConfig(ModelConfig):
"""Dataclass config for a :class:`~benchmarl.models.LSTM`."""
hidden_size: int = MISSING
n_layers: int = MISSING
bias: bool = MISSING
dropout: float = MISSING
compile: bool = MISSING
mlp_num_cells: Sequence[int] = MISSING
mlp_layer_class: Type[nn.Module] = MISSING
mlp_activation_class: Type[nn.Module] = MISSING
mlp_activation_kwargs: Optional[dict] = None
mlp_norm_class: Type[nn.Module] = None
mlp_norm_kwargs: Optional[dict] = None
@staticmethod
def associated_class():
return Lstm
@property
def is_rnn(self) -> bool:
return True
def get_model_state_spec(self, model_index: int = 0) -> Composite:
spec = Composite(
{
f"_hidden_lstm_c_{model_index}": Unbounded(
shape=(self.n_layers, self.hidden_size)
),
f"_hidden_lstm_h_{model_index}": Unbounded(
shape=(self.n_layers, self.hidden_size)
),
}
)
return spec