-
Notifications
You must be signed in to change notification settings - Fork 50
/
eval_results.py
233 lines (191 loc) · 7.44 KB
/
eval_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import collections
import importlib
import json
from os import walk
from pathlib import Path
from typing import Dict, List, Optional
_has_marl_eval = importlib.util.find_spec("marl_eval") is not None
if _has_marl_eval:
from marl_eval.plotting_tools.plotting import (
aggregate_scores,
performance_profiles,
plot_single_task,
probability_of_improvement,
sample_efficiency_curves,
)
from marl_eval.utils.data_processing_utils import (
create_matrices_for_rliable,
data_process_pipeline,
)
from matplotlib import pyplot as plt
def get_raw_dict_from_multirun_folder(multirun_folder: str) -> Dict:
"""Get the ``marl-eval`` input dictionary from the folder of a hydra multirun.
Examples:
.. code-block:: python
from benchmarl.eval_results import get_raw_dict_from_multirun_folder, Plotting
raw_dict = get_raw_dict_from_multirun_folder(
multirun_folder="some_prefix/multirun/2023-09-22/17-21-34"
)
processed_data = Plotting.process_data(raw_dict)
Args:
multirun_folder (str): the absolute path to the multirun folder
Returns:
the dict obtained by merging all the json files in the multirun
"""
return load_and_merge_json_dicts(_get_json_files_from_multirun(multirun_folder))
def _get_json_files_from_multirun(multirun_folder: str) -> List[str]:
files = []
for dirpath, _, filenames in walk(multirun_folder):
for file_name in filenames:
if file_name.endswith(".json") and "wandb" not in file_name:
files.append(str(Path(dirpath) / Path(file_name)))
return files
def load_and_merge_json_dicts(
json_input_files: List[str], json_output_file: Optional[str] = None
) -> Dict:
"""Loads and merges json dictionaries to form the ``marl-eval`` input dictionary .
Args:
json_input_files (list of str): a list containing the absolute paths to the json files
json_output_file (str, optional): if specified, the merged dictionary will be also written
to the file in this absolute path
Returns:
the dict obtained by merging all the json files
"""
def update(d, u):
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = update(d.get(k, {}), v)
else:
d[k] = v
return d
dicts = []
for file in json_input_files:
with open(file, "r") as f:
dicts.append(json.load(f))
full_dict = {}
for single_dict in dicts:
update(full_dict, single_dict)
if json_output_file is not None:
with open(json_output_file, "w+") as f:
json.dump(full_dict, f, indent=4)
return full_dict
class Plotting:
"""Class containing static utilities for plotting in ``marl-eval``.
Examples:
>>> from benchmarl.eval_results import get_raw_dict_from_multirun_folder, Plotting
>>> raw_dict = get_raw_dict_from_multirun_folder(
... multirun_folder="some_prefix/multirun/2023-09-22/17-21-34"
... )
>>> processed_data = Plotting.process_data(raw_dict)
... (
... environment_comparison_matrix,
... sample_efficiency_matrix,
... ) = Plotting.create_matrices(processed_data, env_name="vmas")
>>> Plotting.performance_profile_figure(
... environment_comparison_matrix=environment_comparison_matrix
... )
>>> Plotting.aggregate_scores(
... environment_comparison_matrix=environment_comparison_matrix
... )
>>> Plotting.environemnt_sample_efficiency_curves(
... sample_effeciency_matrix=sample_efficiency_matrix
... )
>>> Plotting.task_sample_efficiency_curves(
... processed_data=processed_data, env="vmas", task="navigation"
... )
>>> plt.show()
"""
METRICS_TO_NORMALIZE = ["return"]
METRIC_TO_PLOT = "return"
@staticmethod
def process_data(raw_data: Dict) -> Dict:
"""Call ``data_process_pipeline`` to normalize the chosen metrics and to clean the data
Args:
raw_data (dict): the input data
Returns:
the processed dict
"""
return data_process_pipeline(
raw_data=raw_data, metrics_to_normalize=Plotting.METRICS_TO_NORMALIZE
)
@staticmethod
def create_matrices(processed_data, env_name: str):
return create_matrices_for_rliable(
data_dictionary=processed_data,
environment_name=env_name,
metrics_to_normalize=Plotting.METRICS_TO_NORMALIZE,
)
############################
# Environment level plotting
############################
@staticmethod
def performance_profile_figure(environment_comparison_matrix):
return performance_profiles(
environment_comparison_matrix,
metric_name=Plotting.METRIC_TO_PLOT,
metrics_to_normalize=Plotting.METRICS_TO_NORMALIZE,
)
@staticmethod
def aggregate_scores(environment_comparison_matrix):
return aggregate_scores(
dictionary=environment_comparison_matrix,
metric_name=Plotting.METRIC_TO_PLOT,
metrics_to_normalize=Plotting.METRICS_TO_NORMALIZE,
save_tabular_as_latex=True,
)
@staticmethod
def probability_of_improvement(
environment_comparison_matrix, algorithms_to_compare: List[List[str]]
):
return probability_of_improvement(
environment_comparison_matrix,
metric_name=Plotting.METRIC_TO_PLOT,
metrics_to_normalize=Plotting.METRICS_TO_NORMALIZE,
algorithms_to_compare=algorithms_to_compare,
)
@staticmethod
def environemnt_sample_efficiency_curves(sample_effeciency_matrix):
return sample_efficiency_curves(
dictionary=sample_effeciency_matrix,
metric_name=Plotting.METRIC_TO_PLOT,
metrics_to_normalize=Plotting.METRICS_TO_NORMALIZE,
)
############################
# Task level plotting
############################
@staticmethod
def task_sample_efficiency_curves(processed_data, task, env):
return plot_single_task(
processed_data=processed_data,
environment_name=env,
task_name=task,
metric_name="return",
metrics_to_normalize=Plotting.METRICS_TO_NORMALIZE,
)
if __name__ == "__main__":
raw_dict = get_raw_dict_from_multirun_folder(
multirun_folder="/Users/matbet/PycharmProjects/BenchMARL/benchmarl/multirun/2023-09-22/17-21-34"
)
processed_data = Plotting.process_data(raw_dict)
(
environment_comparison_matrix,
sample_efficiency_matrix,
) = Plotting.create_matrices(processed_data, env_name="vmas")
Plotting.performance_profile_figure(
environment_comparison_matrix=environment_comparison_matrix
)
Plotting.aggregate_scores(
environment_comparison_matrix=environment_comparison_matrix
)
Plotting.environemnt_sample_efficiency_curves(
sample_effeciency_matrix=sample_efficiency_matrix
)
Plotting.task_sample_efficiency_curves(
processed_data=processed_data, env="vmas", task="navigation"
)
plt.show()