forked from harpak-lab/drosophila-longevity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
week8_work.Rmd
529 lines (414 loc) · 18.1 KB
/
week8_work.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
---
title: "Week 8 Work"
author: "Eric Weine"
date: "4/25/2022"
output:
html_document:
df_print: paged
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r, include=FALSE}
set.seed(1)
library(ggplot2)
'%>%' <- dplyr::'%>%'
```
## Demonstration of Equivalence Between Interaction and Separate Models
First, let's simulate data under two environments.
```{r}
n_env0 <- 100
n_env1 <- 150
maf <- .25 # minor allele frequency
gfx_env0 <- .5 # effect of one minor allele copy in environment 0
gfx_env1 <- .75 # effect of one minor allele copy in environment 1
obs_sd <- sqrt(5) # standard deviation of normal observation noise
# generate genotypes for env0
g_env0 <- sample(
x=c(0, 1, 2),
size=n_env0,
prob=c((1 - maf) ^ 2, 2 * maf * (1 - maf), maf ^ 2),
replace = TRUE
)
# generate genotypes for env1
g_env1 <- sample(
x=c(0, 1, 2),
size=n_env1,
prob=c((1 - maf) ^ 2, 2 * maf * (1 - maf), maf ^ 2),
replace = TRUE
)
# generate quantitative trait with white noise
y_env0 <- gfx_env0 * g_env0 + rnorm(n = n_env0, sd = obs_sd)
y_env1 <- gfx_env1 * g_env1 + rnorm(n = n_env1, sd = obs_sd)
env <- c(rep("env0", n_env0), rep("env1", n_env1))
# dataframe for all data
df <- data.frame(
g = c(g_env0, g_env1),
y = c(y_env0, y_env1),
env = env
)
# divide dataframes up by environment
df_env0 <- df %>%
dplyr::filter(env == "env0")
df_env1 <- df %>%
dplyr::filter(env == "env1")
```
Now, we will estimate 3 different linear regressions. Two of them are separate models for each environment, and one of them is an interaction model. I claim that the coefficients from the interaction model match with the coefficients from the separate models **exactly**.
First, the interaction model:
```{r}
lm_int <- lm(y ~ g + env + g:env, data = df)
summary(lm_int)
```
Here, we can see that the coefficient on g (or the estimated genetic effect in environment 0) is -0.001976, and the estimated effect of g on environment 1 is g + g:envenv1 = -0.001976 + 1.025155 = 1.023179. Finally, the estimated effect of environment 1 is -0.211892.
Now, we will compare these estimates with separate models.
First, we estimate a linear model only in environment 0.
```{r}
lm_env0 <- lm(y ~ g, data = df_env0)
summary(lm_env0)
```
Now, only in environment 1.
```{r}
lm_env1 <- lm(y ~ g, data = df_env1)
summary(lm_env1)
```
So, we see an exact match in the coefficients. From the linear model estimated in environment 0, we have the effect of g as -0.001976. In environment 1, we have the estimated genetic effect as 1.02318 (which is off only by a rounding error from the interaction model). Finally, we can derive the effect of environment 1 by subtracting the intercept in the environment 0 model from the environment 1 model. In this case we get -0.08182 - 0.130070 = -0.21189. Once again an exact match.
The intuition for this is that in an interaction model with a binary interaction variable, we are really just estimating completely separate coefficients for the genetic effect in environment 0 and environment 1. There is no information sharing. If there were additional covariates that were thought not to differ by environment, then estimating separate models would be less efficient than estimating an interaction model, because there is information sharing between the two environments. Moreover, while the estimated standard errors differ between the two models above, there is no actual difference in the estimation error of the two models. Clearly, if two estimators give the exact same estimate each time, their actual estimation errors must be equivalent.
Given that we know that interaction models and separate models are equivalent, the question arises about when we should estimate effects separately in two environments vs. when we should estimate them together (note that there is a third option which is somewhere in between. This is similar to the James-Stein estimator, and something to investigate).
## Comparing Estimation of Separate Models Vs. Estimation of 1 Model
Because we're just considering univariate regressions, it is simpler mathematically to just consider this problem in the context of the estimation of means. So, suppose we have
\begin{align*}
X_{1} &\sim N(\theta_{1}, \sigma^{2}) \\
X_{2} &\sim N(\theta_{2}, \sigma^{2})
\end{align*}
where $\sigma^{2}$ is known and $\theta_{1}$ and $\theta_{2}$ are unknown. We can consider two different estimators for the vector $(\theta_{1}, \theta_{2})$.
Pooled: $(\hat{\theta}_{1}, \hat{\theta}_{2}) = \Big(\frac{X_{1} + X_{2}}{2}, \frac{X_{1} + X_{2}}{2}\Big)$, which would be the MLE if we assumed $\theta_{1} = \theta_{2}$.
Separate: $(\hat{\theta}_{1}, \hat{\theta}_{2}) = (X_{1}, X_{2})$, the separate MLE for $\theta_{1}$ and $\theta_{2}$.
Now, the question is under what conditions does it make sense to use the pooled estimate instead of the separate estimate. To determine this, we will examine the mean-squared error of both estimators.
Suppose we estimate $\hat{\theta}_{i}$ as $X_{i}$. Then,
\begin{align*}
MSE(\hat{\theta}_{i}, \theta_{i}) &= Bias(\hat{\theta}_{i}, \theta_{i})^{2} + Var(\hat{\theta}_{i})\\
&= (E[X_{i}] - \theta_{i})^{2} + Var(X_{i})\\
&= \sigma^{2}
\end{align*}
Thus, $MSE((X_{1}, X_{2}), (\theta_{1}, \theta_{2})) = 2\sigma^{2}$
Now, consider estimating $\hat{\theta}_{1}$ as $\frac{X_{1} + X_{2}}{2}$. Then,
\begin{align*}
MSE(\hat{\theta}_{1}, \theta_{1}) &= Bias(\hat{\theta}_{1}, \theta_{1})^{2} + Var(\hat{\theta}_{i})\\
&= (E\Big[\frac{X_{1} + X_{2}}{2}\Big] - \theta_{1})^{2} + Var(\frac{X_{1} + X_{2}}{2})\\
&= \frac{(\theta_{2} - \theta_{1})^{2}}{4} + \frac{\sigma^{2}}{2}
\end{align*}
Thus, $MSE\Bigg(\Big(\frac{X_{1} + X_{2}}{2}, \frac{X_{1} + X_{2}}{2}\Big), (\theta_{1}, \theta_{2})\Bigg) = \frac{(\theta_{2} - \theta_{1})^{2}}{2} + \sigma^{2}$
We should use the pooled estimator when it has lower mean squared error, or when
\begin{equation*}
(\theta_{2} - \theta_{1}) ^{2} < 2\sigma^{2}
\end{equation*}
Below is a plot of the difference in mean squared errors of the two estimators over varying values of differences in mean and standard deviations.
```{r, echo=FALSE}
# make a grid plot to demonstrate this
theta_diff <- seq(from = 0, to = 4.25, by = .005)
sigma <- seq(from = 0, to = 3, by = .005)
df <- expand.grid(theta_diff, sigma)
colnames(df) <- c("theta_diff", "sigma")
df <- df %>%
dplyr::mutate(
mse_diff = theta_diff ^ 2 - 2 * (sigma ^ 2)
)
library(ggplot2)
ggplot(data = df, aes(x = theta_diff, y = sigma, fill = mse_diff)) +
geom_tile() +
scale_fill_gradient2()
```
The values in red indicate when we should use a pooled estimator, and the values in blue indicate when we should use a separate estimator.
The math will not work out very cleanly in the regression context, but this estimation of normal means is a helpful theoretical exercise. Below, we simulate gwas data from two environments and compare the accuracy of the estimated genetic effects in two environments depending on the true difference in effects and the variance of each datapoint.
```{r}
simulate_two_env_df <- function(
n_e0,
n_e1,
sigma_e0,
sigma_e1,
fx_e0,
fx_e1,
maf = .4
) {
g_e0 <- sample(
x=c(0, 1, 2),
size=n_e0,
prob=c((1 - maf) ^ 2, 2 * maf * (1 - maf), maf ^ 2),
replace = TRUE
)
g_e1 <- sample(
x=c(0, 1, 2),
size=n_e1,
prob=c((1 - maf) ^ 2, 2 * maf * (1 - maf), maf ^ 2),
replace = TRUE
)
y_e0 <- g_e0 * fx_e0 + rnorm(n = n_e0, sd = sigma_e0)
y_e1 <- g_e1 * fx_e1 + rnorm(n = n_e1, sd = sigma_e1)
sim_df <- data.frame(
y = c(y_e0, y_e1),
g = c(g_e0, g_e1),
e = c(rep("e0", n_e0), rep("e1", n_e1))
)
return(sim_df)
}
simulate_mse_two_env <- function(
n_individuals,
fx_diff_grid,
sigma_grid,
sims_per_grid_pt = 30
) {
sim_grid <- expand.grid(fx_diff_grid, sigma_grid)
colnames(sim_grid) <- c("fx_diff", "sigma")
mse_diff_vec <- numeric(nrow(sim_grid))
for (i in 1:nrow(sim_grid)) {
sim_fx_diff <- sim_grid$fx_diff[i]
sim_sigma <- sim_grid$sigma[i]
fx_e0 <- 0
fx_e1 <- sim_fx_diff
avg_mse_diff <- 0
for (j in 1:sims_per_grid_pt) {
sim_df <- simulate_two_env_df(
n_e0 = n_individuals,
n_e1 = n_individuals,
sigma_e0 = sim_sigma,
sigma_e1 = sim_sigma,
fx_e0 = fx_e0,
fx_e1 = fx_e1
)
lm_comb <- lm(y ~ g, data = sim_df)
g_est_comb <- coef(summary(lm_comb))['g', 'Estimate']
lm_e0 <- lm(y ~ g, data = sim_df, subset = (e == "e0"))
g_e0_est <- coef(summary(lm_e0))['g', 'Estimate']
lm_e1 <- lm(y ~ g, data = sim_df, subset = (e == "e1"))
g_e1_est <- coef(summary(lm_e1))['g', 'Estimate']
mse_comb <- (g_est_comb - fx_e0) ^ 2 + (g_est_comb - fx_e1) ^ 2
mse_sep <- (g_e0_est - fx_e0) ^ 2 + (g_e1_est - fx_e1) ^ 2
mse_diff <- mse_comb - mse_sep
avg_mse_diff <- avg_mse_diff + (1 / sims_per_grid_pt) * mse_diff
}
mse_diff_vec[i] <- avg_mse_diff
}
sim_grid$mse_diff <- mse_diff_vec
return(sim_grid)
}
```
```{r, eval=FALSE}
sim_test <- simulate_mse_two_env(
n_individuals = 50,
fx_diff_grid = seq(from = 0, to = 1, by = .009),
sigma_grid = seq(from = .05, to = sqrt(6), by = .02)
)
```
```{r, include=FALSE}
sim_test <- readr::read_rds("~/Documents/academic/drosophila_longevity/drosophila-longevity/rds_data/sim_reg_test.rds")
```
Below is a grid of the results. It does not look quite as smooth because I only ran 30 regressions for each grid point, which is not enough to get an excellent estimate of the MSE difference. However, this plot confirms the theoretical result above.
```{r, echo=FALSE}
ggplot(data = sim_test, aes(x = fx_diff, y = sigma, fill = mse_diff)) +
geom_tile() +
scale_fill_gradient2()
```
I'm not sure how useful this is because I don't know what on what scales the effect difference and standard deviation should vary on, but I think this is on the right track.
# Pallares Classification
```{r, include=FALSE}
summary_table <- read.delim('data/SummaryTable_allsites_12Nov20.txt')
# replace 0 p-values with small numbers
summary_table <- summary_table %>%
dplyr::select(c(site, pval_CTRL, pval_HS, coef_CTRL, coef_HS, sig_cat)) %>%
dplyr::mutate(
pval_CTRL = pmax(.00000000001, pval_CTRL),
pval_HS = pmax(.00000000001, pval_HS)
)
# construct std error estimates from coefficients and p-values
summary_table <- summary_table %>%
dplyr::mutate(
std_error_ctrl = abs(coef_CTRL) / qnorm((2 - pval_CTRL) / 2),
std_error_hs = abs(coef_HS) / qnorm((2 - pval_HS) / 2)
)
sites_df <- data.frame(stringr::str_split_fixed(summary_table$site, ":", 2))
colnames(sites_df) <- c("chromosome", "site_id")
sites_df <- sites_df %>%
dplyr::mutate(site_id = as.numeric(site_id))
# split into blocks of a certain length
split_into_LD_blocks <- function(df, block_length) {
block_range <- seq(from = min(df$site_id), to = max(df$site_id), by = block_length)
df %>%
dplyr::mutate(block_id = plyr::laply(site_id, function(x) sum(x > block_range)))
}
# group by chromosome and then split into blocks
sites_df <- sites_df %>%
dplyr::group_by(chromosome) %>%
dplyr::group_modify(~ split_into_LD_blocks(.x, 1e4))
# Now, want to sample one SNP from each group
sites_sample_df <- sites_df %>%
dplyr::ungroup() %>%
dplyr::sample_frac() %>% #randomly shuffle df
dplyr::distinct(chromosome, block_id, .keep_all = TRUE) %>%
dplyr::select(chromosome, site_id)
# Reconstruct site names
selected_sites <- purrr::pmap_chr(
list(sites_sample_df$chromosome, sites_sample_df$site_id),
function(x, y) glue::glue("{x}:{y}")
)
summary_table_samp <- summary_table %>%
dplyr::filter(site %in% selected_sites)
summary_table_signif <- summary_table %>%
dplyr::filter(sig_cat != 'NS')
# generate a test df
sites_test_df <- sites_df %>%
dplyr::ungroup() %>%
dplyr::sample_frac() %>% #randomly shuffle df
dplyr::distinct(chromosome, block_id, .keep_all = TRUE) %>%
dplyr::select(chromosome, site_id)
# Reconstruct site names
selected_sites_test <- purrr::pmap_chr(
list(sites_test_df$chromosome, sites_test_df$site_id),
function(x, y) glue::glue("{x}:{y}")
)
summary_table_test <- summary_table %>%
dplyr::filter(site %in% selected_sites_test)
reg_fx_samp_mat <- t(matrix(
data = c(summary_table_samp$coef_CTRL, summary_table_samp$coef_HS),
nrow = 2,
byrow = TRUE
))
colnames(reg_fx_samp_mat) <- c("ctrl", "hs")
reg_fx_mat_test <- t(matrix(
data = c(summary_table_test$coef_CTRL, summary_table_test$coef_HS),
nrow = 2,
byrow = TRUE
))
colnames(reg_fx_mat_test) <- c("ctrl", "hs")
reg_fx_mat_signif <- t(matrix(
data = c(summary_table_signif$coef_CTRL, summary_table_signif$coef_HS),
nrow = 2,
byrow = TRUE
))
colnames(reg_fx_mat_signif) <- c("ctrl", "hs")
reg_se_samp_mat <- t(matrix(
data = c(summary_table_samp$std_error_ctrl, summary_table_samp$std_error_hs),
nrow = 2,
byrow = TRUE
))
colnames(reg_se_samp_mat) <- c("ctrl", "hs")
reg_se_mat_test <- t(matrix(
data = c(summary_table_test$std_error_ctrl, summary_table_test$std_error_hs),
nrow = 2,
byrow = TRUE
))
colnames(reg_se_mat_test) <- c("ctrl", "hs")
reg_se_mat_signif <- t(matrix(
data = c(summary_table_signif$std_error_ctrl, summary_table_signif$std_error_hs),
nrow = 2,
byrow = TRUE
))
colnames(reg_se_mat_signif) <- c("ctrl", "hs")
mash_samp_data <- mashr::mash_set_data(reg_fx_samp_mat, reg_se_samp_mat)
mash_test_data <- mashr::mash_set_data(reg_fx_mat_test, reg_se_mat_test)
mash_signif_data <- mashr::mash_set_data(reg_fx_mat_signif, reg_se_mat_signif)
mash_fit <- readr::read_rds("rds_data/12k_fitted_g_loose.rds")
mash_posterior_samp <- mashr::mash(
data = mash_samp_data,
g = mash_fit,
fixg = TRUE
)
mash_posterior_signif <- mashr::mash(
data = mash_signif_data,
g = mash_fit,
fixg = TRUE
)
cov_mat_names_samp <- colnames(mash_posterior_samp$posterior_weights)
map_mash_samp <- cov_mat_names_samp[max.col(mash_posterior_samp$posterior_weights)]
map_mash_samp_df <- data.frame(
site = summary_table_samp$site,
cov_map = map_mash_samp
)
summary_table_samp <- summary_table_samp %>%
dplyr::inner_join(map_mash_samp_df, by=c("site"))
cov_mat_names_sig <- colnames(mash_posterior_signif$posterior_weights)
map_mash_sig <- cov_mat_names_sig[
max.col(mash_posterior_signif$posterior_weights)
]
map_mash_sig_df <- data.frame(
site = summary_table_signif$site,
cov_map = map_mash_sig
)
summary_table_sig <- summary_table_signif %>%
dplyr::inner_join(map_mash_sig_df, by=c("site"))
```
We will use the sparse mash model to classify signals this week. Below is a comparison of the classifications for a sample of 12030 SNPs (1 from each LD block). The rows are Pallares classifications and the columns are MASH classifications.
```{r, include = FALSE}
summary_table_samp <- summary_table_samp %>%
dplyr::mutate(
mixt_comp = dplyr::case_when(
cov_map %in% c("equal_corr_1.11", "equal_corr_1.12") ~ "equal_corr_1",
cov_map == "hs_amp_1.5_corr_1.11" ~ "hs_amp_1.5_corr_1",
cov_map == "hs_amp_3_corr_-1.14" ~ "hs_amp_3_corr_-1"
)
)
tab <- table(summary_table_samp$sig_cat, summary_table_samp$mixt_comp)
mat <- as.matrix(tab)
control_spec_mat <- matrix(data = c(0, 0, 0), nrow = 1, ncol = 3)
rownames(control_spec_mat) <- c("C")
colnames(control_spec_mat) <- c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1")
null_spec_mat <- matrix(data = c(0, 0, 0, 0), nrow = 4)
rownames(null_spec_mat) <- c("NS", "shared", "HS", "C")
colnames(null_spec_mat) <- c("null")
ctrl_spec_mat <- matrix(data = c(0, 0, 0, 0), nrow = 4)
rownames(ctrl_spec_mat) <- c("NS", "shared", "HS", "C")
colnames(ctrl_spec_mat) <- c("ctrl_spec")
hs_spec_mat <- matrix(data = c(0, 0, 0, 0), nrow = 4)
rownames(hs_spec_mat) <- c("NS", "shared", "HS", "C")
colnames(hs_spec_mat) <- c("hs_spec")
mat <- rbind(mat, control_spec_mat)
mat <- cbind(mat, null_spec_mat)
mat <- cbind(mat, ctrl_spec_mat)
mat <- cbind(mat, hs_spec_mat)
mat <- mat[c("NS", "shared", "HS", "C"),,drop=FALSE]
rownames(mat) <- c("null", "shared", "hs_spec", "ctrl_spec")
tab <- as.table(mat)
```
```{r, echo=FALSE}
knitr::kable(tab)
```
Below is a plot of the estimated regression coefficients of Pallares colored by mash classification. Note that the columns in the table above that sum to zero are not shown in the plot legend. I felt that this made the plot easier to understand but we can certainly change this.
```{r, echo=FALSE}
plot_colors <- c("orange", "blue", "red")
names(plot_colors) <- c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1")
ggplot(data = summary_table_samp, aes(x = coef_HS, y = coef_CTRL, color = mixt_comp)) +
geom_point(size = .75) +
scale_color_manual(name = "mixt_comp", values = plot_colors)
```
It is also instructive to look only at the SNPs that Pallares classifies as significant.
```{r, include=FALSE}
summary_table_sig <- summary_table_sig %>%
dplyr::mutate(
mixt_comp = dplyr::case_when(
cov_map %in% c("equal_corr_1.11", "equal_corr_1.12") ~ "equal_corr_1",
cov_map %in% c("hs_amp_1.5_corr_1.11", "hs_amp_1.5_corr_1.15") ~ "hs_amp_1.5_corr_1",
cov_map == "hs_amp_3_corr_-1.14" ~ "hs_amp_3_corr_-1",
cov_map == "ctrl_spec.14" ~ "ctrl_spec"
)
)
tab <- table(summary_table_sig$sig_cat, summary_table_sig$mixt_comp)
mat <- as.matrix(tab)
extra_mat <- matrix(data = c(0, 0, 0, 0, 0, 0), nrow = 3, ncol = 2)
rownames(extra_mat) <- c("CTRL", "HS", "shared")
colnames(extra_mat) <- c("null", "hs_spec")
mat <- cbind(mat, extra_mat)
rownames(mat) <- c("ctrl_spec", "hs_spec", "shared")
mat <- mat[,c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1", "null", "ctrl_spec", "hs_spec"),drop=FALSE]
mat <- mat[c("shared", "hs_spec", "ctrl_spec"),,drop=FALSE]
tab <- as.table(mat)
```
```{r, echo=FALSE}
knitr::kable(tab)
```
Again, below is a plot of the regression coefficients colored by mash classification.
```{r, echo=FALSE}
plot_colors <- c("orange", "blue", "red", "green")
names(plot_colors) <- c("equal_corr_1", "hs_amp_1.5_corr_1", "hs_amp_3_corr_-1", "ctrl_spec")
ggplot(data = summary_table_sig, aes(x = coef_HS, y = coef_CTRL, color = mixt_comp)) +
geom_point(size = .75) +
scale_color_manual(name = "mixt_comp", values = plot_colors)
```