- NVIDIA GPU (Tesla T4 or equivalent)
- Ubuntu 18.04
- CUDA Toolkit 10.0
- Docker
- nvidia-docker
Create and move to temporary folder:
mkdir /temp
cd /temp
Clone dockerfiles repository:
git clone https://github.com/eufat/dockerfiles.git
cd dockerfiles/jupyter-keras-gpu
Build docker image as jupyter-gpu
tag:
nvidia-docker build -t jupyter-gpu .
Clone this repository to root directory:
cd /root
git clone https://github.com/eufat/skripsi.git
Run jupyter-gpu
image as skripsi
container and mount it to host directory:
nvidia-docker run -it -d \
--mount type=bind,source=/root/skripsi/,target=/notebooks/skripsi \
-p 8888:8888 -p 6006:6006 \
--name skripsi \
jupyter-gpu
Start the skripsi
container you have built:
nvidia-docker start skripsi
(Optional: add nvidia-docker start skripsi
command to your remote server startup script)
Open localhost:8888/lab
or server_ip_address:8888/lab
when using remote server (allow port 8888 in remote server firewall first).
Run tensorboard --logdir=/notebooks/logs --host 0.0.0.0
inside container or in JupyterLab terminal. Open localhost:6006
or server_ip_address:6006
when using remote server (allow port 6006 in remote server firewall first).
Install Git LFS first:
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
Inside skripsi repository, pull .raw
HSI datasets:
git lfs install
git lfs pull