forked from nabsabraham/focal-tversky-unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
75 lines (65 loc) · 2.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 29 15:12:49 2018
@author: Nabila Abraham
"""
import numpy as np
import matplotlib.pyplot as plt
def plot(hist, epochnum, batchnum, name, is_attnnet=0):
plt.figure()
if is_attnnet==True:
train_loss = hist['final_loss']
val_loss = hist['val_final_loss']
acc = hist['final_dsc']
val_acc = hist['val_final_dsc']
else:
train_loss = hist['loss']
val_loss = hist['val_loss']
acc = hist['dsc']
val_acc = hist['val_dsc']
epochs = np.arange(1, len(train_loss)+1,1)
plt.plot(epochs,train_loss, 'b', label='Training Loss')
plt.plot(epochs,val_loss, 'r', label='Validation Loss')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('LOSS Model={}, Epochs={}, Batch={}'.format(name,epochnum, batchnum))
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.figure()
plt.plot(epochs, acc, 'b', label='Training Dice Coefficient')
plt.plot(epochs, val_acc, 'r', label='Validation Dice Coefficient')
plt.grid(color='gray', linestyle='--')
plt.legend()
plt.title('DSC Model={}, Epochs={}, Batch={}'.format(name,epochnum, batchnum))
plt.xlabel('Epochs')
plt.ylabel('Dice')
def check_preds(ypred, ytrue):
smooth = 1
pred = np.ndarray.flatten(np.clip(ypred,0,1))
gt = np.ndarray.flatten(np.clip(ytrue,0,1))
intersection = np.sum(pred * gt)
union = np.sum(pred) + np.sum(gt)
return np.round((2 * intersection + smooth)/(union + smooth),decimals=5)
def confusion(y_true, y_pred):
smooth = 1
y_pred_pos = np.round(np.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = np.round(np.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tp = (np.sum(y_pos * y_pred_pos) + smooth) / (np.sum(y_pos) + smooth)
tn = (np.sum(y_neg * y_pred_neg) + smooth) / (np.sum(y_neg) + smooth)
return [tp, tn]
def auc(y_true, y_pred):
smooth = 1
y_pred_pos = np.round(np.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = np.round(np.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tp = np.sum(y_pos * y_pred_pos)
tn = np.sum(y_neg * y_pred_neg)
fp = np.sum(y_neg * y_pred_pos)
fn = np.sum(y_pos * y_pred_neg)
tpr = (tp + smooth) / (tp + fn + smooth) #recall
tnr = (tn + smooth) / (tn + fp + smooth)
prec = (tp + smooth) / (tp + fp + smooth) #precision
return [tpr, tnr, prec]