-
Notifications
You must be signed in to change notification settings - Fork 2
/
visualisation_old_tool.py
547 lines (454 loc) · 19 KB
/
visualisation_old_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import math
import numpy as np
import sys
import os
import glob
import subprocess
import astropy.io.fits as pyfits
from astropy.wcs import WCS
from astropy.visualization import make_lupton_rgb
import matplotlib
if sys.version_info[0] < 3:
from Tkinter import *
from tkMessageBox import *
else:
from tkinter import *
from tkinter.messagebox import *
import PIL
from PIL import Image, ImageTk, ImageDraw
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from astropy.visualization import lupton_rgb
from astropy.io import fits
#############################################################################################
#Please enter the path of ds9 executable here:
#pathds9 = 'C:\\SAOImageDS9\\ds9.exe'
pathds9 = '/usr/local/bin/ds9'
#############################################################################################
def changemin_max():
global scale_min
global scale_max
try:
scale_min=float(minzone.get())
scale_max =float(maxzone.get())
except ValueError:
showinfo("Error", "Bad values")
if scale_min>=scale_max:
showinfo("Error", "Bad values")
if scale_state=='linear':
linear()
elif scale_state=='squared':
squared()
elif scale_state=='lupton':
showinfo("Error", "Not available with lupton RGB")
elif scale_state=='asinh':
asinh()
elif scale_state=='log':
logarithm()
else:
print ('unknown scale')
def background_rms_image(cb,image):
xg,yg = np.shape(image)
cut0 = image[0:cb,0:cb]
cut1 = image[xg-cb:xg,0:cb]
cut2 = image[0:cb,yg-cb:yg]
cut3 = image[xg-cb:xg,yg-cb:yg]
std = np.std([cut0,cut1,cut2,cut3])
return std
#def showplot_rgb(rimage,gimage,bimage):
# bgr = background_rms_image(8,rimage)
# bgg = background_rms_image(8,gimage)
# bgb = background_rms_image(8,bimage)
# map = lupton_rgb.AsinhZScaleMapping(rimage, gimage, bimage,pedestal=[bgr,bgg,bgb],Q=5)
# color_image = map.make_rgb_image(rimage, gimage, bimage)
# return color_image
def sqrt_sc(inputArray, scale_min=None, scale_max=None):
#this definition was taken from lenstronomy
imageData = np.array(inputArray, copy=True)
if scale_min is None:
scale_min = imageData.min()
if scale_max is None:
scale_max = imageData.max()
imageData = imageData.clip(min=scale_min, max=scale_max)
imageData = imageData - scale_min
indices = np.where(imageData < 0)
imageData[indices] = 0.00001
imageData = np.sqrt(imageData)
imageData = imageData / np.sqrt(scale_max - scale_min)
return imageData
def scale_val(image_array):
if len(np.shape(image_array)) == 2:
image_array = [image_array]
vmin = np.min([background_rms_image(5,image_array[i]) for i in range(len(image_array))])
xl,yl=np.shape(image_array[0])
box_size = 14 #in pixel
xmin = int((xl)/2-(box_size/2))
xmax = int((xl)/2+(box_size/2))
vmax = np.max([image_array[i][xmin:xmax,xmin:xmax] for i in range(len(image_array))])
return vmin/2,vmax*2
def showplot_rgb(rimage,gimage,bimage):
vmin,vmax=scale_val([rimage,gimage,bimage])
img = np.zeros((rimage.shape[0], rimage.shape[1], 3), dtype=float)
img[:,:,0] = sqrt_sc(rimage, scale_min=vmin, scale_max=vmax)
img[:,:,1] = sqrt_sc(gimage, scale_min=vmin, scale_max=vmax)
img[:,:,2] = sqrt_sc(bimage, scale_min=vmin, scale_max=vmax)
return img
def new_window1():
global win1
global histo
global pilImage2
global minzone
global maxzone
try:
if win1.state() == "normal": win1.focus()
except:
imageData, height, width = numpyarray_from_fits(pathtofile + listimage[counter])
flat=imageData.flatten()
figure1 = plt.Figure(figsize=(500, 350), dpi=500)
counts, bins = np.histogram(flat)
plt.style.use('dark_background')
plt.hist(bins[:-1], bins, weights=counts)
plt.savefig('histo.png', bbox_inches='tight')
pilImage2 = Image.open('histo.png')
plt.close()
histo = PIL.ImageTk.PhotoImage(image=pilImage2)#.resize((500, 400)))
win1 = Toplevel()
#win1.geometry("300x300+500+200")
win1["bg"] = 'black'
canvas2 = Canvas(win1, width=580, height=430, bg='black')
canvas2.pack(side=TOP, padx=0, pady=0)
canvas2.create_image(0, 0, image=histo, anchor=NW)
os.remove('histo.png')
ButtonOK = Button(win1, text=" OK ", command=changemin_max)
ButtonOK.pack(side=BOTTOM, padx=40, pady=2)
minzone = Entry(win1, width=15)
minzone.insert(0, "min value")
minzone.pack(side=LEFT, padx=20, pady=10)
maxzone = Entry(win1, width=15)
maxzone.insert(0, "max value")
maxzone.pack(side=RIGHT, padx=20, pady=10)
win1.update_idletasks()
def logarithm():
global scale_state
scale_state = 'log'
imageData, height, width = numpyarray_from_fits(pathtofile + listimage[counter])
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
#scale_min = np.amin(imageData)
#scale_max = np.amax(imageData)
factor = math.log10(scale_max - scale_min)
indices0 = np.where(imageData < scale_min)
indices1 = np.where((imageData >= scale_min) & (imageData <= scale_max))
indices2 = np.where(imageData > scale_max)
imageData[indices0] = 0.0
imageData[indices2] = 1.0
try:
imageData[indices1] = np.log10(imageData[indices1]) / (factor*1.0)
plt.imshow(imageData, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('foolog.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('foolog.png')
global photo
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('foolog.png')
fenetre.update_idletasks()
except:
print ("Error on math.log10 for ", (imageData[i][j] - scale_min))
def linear():
global scale_state
scale_state='linear'
imageData, height, width = numpyarray_from_fits(pathtofile + listimage[counter])
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
#scale_min = np.amin(imageData)
#scale_max = np.amax(imageData)
imageData = imageData.clip(min=scale_min, max=scale_max)
imageData = (imageData - scale_min) / (scale_max - scale_min)
indices = np.where(imageData < 0)
imageData[indices] = 0.0
indices = np.where(imageData > 1)
imageData[indices] = 1.0
plt.imshow(imageData, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('lin.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('lin.png')
global photo
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('lin.png')
fenetre.update_idletasks()
def open_image_in_ds9(pathds9,pathtofile,name):
p=subprocess.Popen([pathds9, pathtofile+name])
returncode = p.wait()
def open_ds9():
name=listimage[counter]
open_image_in_ds9(pathds9, pathtofile, name)
def squared():
global scale_state
scale_state='squared'
imageData, height, width = numpyarray_from_fits(pathtofile + listimage[counter])
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
#scale_min = np.amin(imageData)
#scale_max = np.amax(imageData)
imageData = imageData.clip(min=scale_min, max=scale_max)
imageData = imageData - scale_min
indices = np.where(imageData < 0)
imageData[indices] = 0.0
imageData = np.sqrt(imageData)
imageData = imageData / math.sqrt(scale_max - scale_min)
plt.imshow(imageData, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('sqrt.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('sqrt.png')
global photo
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('sqrt.png')
fenetre.update_idletasks()
def asinh():
global scale_state
scale_state='asinh'
imageData, height, width = numpyarray_from_fits(pathtofile + listimage[counter])
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
#scale_min = np.amin(imageData)*1.
#scale_max = np.amax(imageData)*1.
factor = np.arcsinh((scale_max - scale_min) / 2.0)
indices0 = np.where(imageData < scale_min)
indices1 = np.where((imageData >= scale_min) & (imageData <= scale_max))
indices2 = np.where(imageData > scale_max)
imageData[indices0] = 0.0
imageData[indices2] = 1.0
imageData[indices1] = np.arcsinh((imageData[indices1] - scale_min) / 2.0) / factor
plt.imshow(imageData, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('sinh.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('sinh.png')
global photo
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('sinh.png')
fenetre.update_idletasks()
def previous_next(timesignal):
global photo
global counter
global scale_min
global scale_max
if timesignal=='past':
if counter-1<0:
showinfo("Error", "This is the first image")
else:
counter=counter-1
image, height, width = numpyarray_from_fits(pathtofile + listimage[counter])
scale_min = np.amin(image)
scale_max = np.amax(image)
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
if scale_state == 'squared':
squared()
elif scale_state == 'asinh':
asinh()
elif scale_state == 'log':
logarithm()
else:
plt.imshow(image, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('foo.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('foo.png')
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('foo.png')
fenetre.update_idletasks()
else:
if counter+1<=number_graded:
counter=counter+1
image, height, width = numpyarray_from_fits(pathtofile + listimage[counter])
scale_min = np.amin(image)
scale_max = np.amax(image)
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
if scale_state == 'squared':
squared()
elif scale_state == 'asinh':
asinh()
elif scale_state == 'log':
logarithm()
else:
plt.imshow(image, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('foo.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('foo.png')
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('foo.png')
fenetre.update_idletasks()
else:
showinfo("Error", "Please grade this image first!")
def update_lens(grade):
global photo
global counter
global number_graded
global scale_min
global scale_max
if counter < COUNTER_MAX:
listnames[counter] = listimage[counter][:-5]
classification[counter] = str(grade)
number_graded=number_graded+1
counter = counter + 1
if counter==COUNTER_MAX:
image, height, width = numpyarray_from_fits(pathtofile + listimage[counter-1])
scale_min = np.amin(image)
scale_max = np.amax(image)
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
if scale_state == 'squared':
squared()
elif scale_state == 'asinh':
asinh()
elif scale_state == 'log':
logarithm()
else:
plt.imshow(image, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('foo.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('foo.png')
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('foo.png')
fenetre.update_idletasks()
else:
image, height, width = numpyarray_from_fits(pathtofile+listimage[counter])
scale_min = np.amin(image)
scale_max = np.amax(image)
figure1 = plt.Figure(figsize=(50, 50), dpi=100)
if scale_state == 'squared':
squared()
elif scale_state == 'asinh':
asinh()
elif scale_state == 'log':
logarithm()
else:
plt.imshow(image, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('foo.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('foo.png')
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('foo.png')
fenetre.update_idletasks()
else:
showinfo("Error", 'No more images to analyse')
np.savetxt('./classifications/classification_from' +listnames[0] +'to'+listnames[-1]+".csv",
np.transpose(np.array([listnames, classification], dtype='U40')), delimiter=",", fmt='%s')
return
def numpyarray_from_fits(fits_path,ind_image=0,color=False):
_img = pyfits.open(fits_path)[ind_image].data
try:
height, width = np.shape(_img)
return _img,height, width
except ValueError:
n,height,width= np.shape(_img)
if color==True:
return _img[0],_img[1],_img[2],height,width
else:
return _img[0],height,width
def get_legacy_survey(counter):
import urllib.request
import pandas as pd
s_path='./files_to_visualize/'
sam=glob.glob(s_path+'*.csv')
if len(sam)==1:
sample=pd.read_csv(sam[0])
ra=sample.iloc[counter]['ra']
dec=sample.iloc[counter]['dec']
savedir ='./legacy_survey/'
url = 'http://legacysurvey.org/viewer/cutout.jpg?ra='+str(ra)+'&dec='+str(dec)+'&layer=dr8&pixscale=0.06'
savename = str(ra)+'_'+str(dec)+'dr8.jpg'
urllib.request.urlretrieve(url, savedir+savename)
url = 'http://legacysurvey.org/viewer/cutout.jpg?ra='+str(ra)+'&dec='+str(dec)+'&layer=dr8-resid&pixscale=0.06'
savename = str(ra)+'_'+str(dec)+'dr8-resid.jpg'
urllib.request.urlretrieve(url, savedir+savename)
if len(sam)==0:
print('Error: Provide a csv file with ra,dec keywords for all the files in the folder')
def save_csv():
if counter==0:
showinfo("Error", "Empty list")
else:
np.savetxt('./classifications/classification_from' + listnames[0] + 'to' + listnames[counter] + ".csv",
np.transpose(np.array([listnames[0:counter], classification[0:counter]], dtype='U40')), delimiter=",", fmt='%s')
def open_lupton():
global scale_state
try:
#image_R, image_G,image_B ,height, width = numpyarray_from_fits(pathtofile + listimage[counter],color=True)
image_B, image_G,image_R=[fits.open(pathtofile + listimage[counter])[0].data,fits.open(pathtofile + listimage[counter])[1].data,fits.open(pathtofile + listimage[counter])[2].data]
image =showplot_rgb(image_R,image_G,image_B)
plt.imshow(image, origin='lower')
plt.axis('off')
plt.savefig('lupton.png', bbox_inches='tight')
plt.close()
pilImage = Image.open('lupton.png')
global photo
photo = PIL.ImageTk.PhotoImage(image=pilImage.resize((500, 500)))
canvas.create_image(0, 0, image=photo, anchor=NW)
os.remove('lupton.png')
scale_state='lupton'
fenetre.update_idletasks()
except ValueError:
showinfo("Error", "Not a color image")
if __name__ == '__main__':
pathtofile='./files_to_visualize/'
listimage=sorted(os.listdir(pathtofile))
counter=0
number_graded=0
COUNTER_MAX=len(listimage)
image, height, width=numpyarray_from_fits(pathtofile+listimage[0])
listnames=['None'] * len(listimage)
classification=['None'] * len(listimage)
scale_min = np.amin(image)
scale_max = np.amax(image)
scale_state='linear'
figure1 = plt.Figure(figsize=(50,50), dpi=100)
plt.imshow(image, cmap='gray', origin='lower')
plt.axis('off')
plt.savefig('foo.png', bbox_inches='tight')
plt.close()
fenetre = Tk()
canvas=Canvas(fenetre, width=500, height=500, bg='ivory')
canvas.pack(side=TOP, padx=0, pady=0)
pilImage = Image.open('foo.png')
photo = PIL.ImageTk.PhotoImage(image = pilImage.resize((500, 500)))
canvas.create_image(250, 250, image=photo)
os.remove('foo.png')
Button(fenetre,text=" 3 ", command= lambda:update_lens(3)).pack(side=LEFT, padx=60, pady=5)
Button(fenetre,text=" 2 ", command=lambda:update_lens(2)).pack(side=LEFT, padx=60, pady=5)
Button(fenetre, text=" 1 ", command=lambda:update_lens(1)).pack(side=LEFT, padx=60, pady=5)
Button(fenetre, text=" 0 ", command=lambda:update_lens(0)).pack(side=LEFT, padx=60, pady=5)
menubar = Menu(fenetre)
menu1 = Menu(menubar, tearoff=0)
menu1.add_command(label="Log", command=logarithm)
menu1.add_command(label="Linear", command=linear)
menu1.add_command(label="Sqrt", command=squared)
menu1.add_command(label="Asinh", command=asinh)
menu1.add_command(label="Histogram", command=new_window1)
menu1.add_command(label="Lupton RGB", command=open_lupton)
menu1.add_separator()
menubar.add_cascade(label="Change scale", menu=menu1)
menu2 = Menu(menubar, tearoff=0)
menu2.add_command(label="Save CSV", command=save_csv)
menu2.add_separator()
menubar.add_cascade(label="Save", menu=menu2)
menu4 = Menu(menubar, tearoff=0)
menu4.add_command(label="Backward", command= lambda: previous_next('past'))
menu4.add_separator()
menu4.add_command(label="Forward", command=lambda: previous_next('future'))
menu4.add_separator()
menubar.add_cascade(label="Change image", menu=menu4)
menu5 = Menu(menubar, tearoff=0)
menu5.add_command(label="ds9", command=open_ds9)
menu5.add_separator()
menubar.add_cascade(label="Open with an external software", menu=menu5)
fenetre.config(menu=menubar)
fenetre.mainloop()