-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtoy_losses.py
369 lines (303 loc) · 11.3 KB
/
toy_losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
import torch.autograd as autograd
import torch.optim as optim
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_optimizer(config, params):
"""Returns a flax optimizer object based on `config`."""
if config.optim.optimizer == 'Adam':
optimizer = optim.Adam(params, lr=config.optim.lr,
betas=(config.optim.beta1, 0.999), eps=config.optim.eps,
weight_decay=config.optim.weight_decay,
amsgrad=config.optim.amsgrad)
else:
raise NotImplementedError(
f'Optimizer {config.optim.optimizer} not supported yet!')
return optimizer
def toy_optimization_manager(config):
"""Returns an optimize_fn based on `config`."""
def optimize_fn(optimizer, params, step, lr=config.optim.lr,
warmup=config.optim.warmup,
grad_clip=config.optim.grad_clip):
"""Optimizes with warmup and gradient clipping (disabled if negative)."""
if warmup > 0:
for g in optimizer.param_groups:
g['lr'] = lr * np.minimum(step / warmup, 1.0)
if grad_clip >= 0:
torch.nn.utils.clip_grad_norm_(params, max_norm=grad_clip)
optimizer.step()
return optimize_fn
def joint_loss(scorenet, sde, qx, device, eps=1e-5, likelihood_weighting=False):
"""
in objective, T = [0, 1]
px, qx, xt: (batch_size, 1)
t: (batch_size, 1)
"""
# sample appropriate data
n = len(qx)
t = torch.rand(n, 1) * (1 - eps) + eps
t = t.to(device)
px = torch.randn_like(qx).to(device)
mean, std = sde.marginal_prob(qx, t)
xt = mean + px * std
# device things
px = px.to(device) # noise
qx = qx.to(device) # data
xt = xt.to(device) # interp
t = t.to(device)
# set up utils for reweighting if needed
if not likelihood_weighting:
weighting_fn = lambda t: sde.marginal_prob(torch.zeros_like(t), t)[1] ** 2
else:
weighting_fn = lambda t: sde.sde(torch.zeros_like(t), t)[1] ** 2
def grad_weighting_fn(t):
with torch.enable_grad():
t.requires_grad_()
return autograd.grad(weighting_fn(t).sum(), t)[0]
# boundary conditions
t0 = torch.zeros((len(px), 1)).to(px.device) + eps
t1 = torch.ones((len(qx), 1)).to(qx.device)
# the appropriate weighting functions
lambda_t = weighting_fn(t)
lambda_t0 = weighting_fn(t0)
lambda_t1 = weighting_fn(t1)
lambda_dt = grad_weighting_fn(t)
# reweighted version
term1 = (2 * scorenet(qx, t0)[-1]) * lambda_t0 # T=0 is data
term2 = (2 * scorenet(px, t1)[-1]) * lambda_t1 # T=1 is noise
# need to differentiate score wrt t
score_x, xt_score = scorenet(xt, t)
# dsm_loss
dsm_loss = torch.square(score_x + px / std.to(device))
dsm_loss = dsm_loss * lambda_t
with torch.enable_grad():
t.requires_grad_(True)
xt_score_dt = autograd.grad(scorenet(xt, t)[-1].sum(), t, create_graph=True)[0]
term3 = (2 * xt_score_dt) * lambda_t
term4 = (2 * xt_score) * lambda_dt
term5 = (xt_score ** 2) * lambda_t
loss = dsm_loss + term1 - term2 + term3 + term4 + term5
# 1-d so we can just take the mean rather than summing
return loss.mean()
# @title Define time-wise loss
def time_loss(scorenet, sde, qx, device, eps=1e-5, likelihood_weighting=False):
"""
in objective, T = [0, 1]
px, qx, xt: (batch_size, 1)
t: (batch_size, 1)
"""
# sample appropriate data
n = len(qx)
t = torch.rand(n, 1) * (1 - eps) + eps
t = t.to(device)
px = torch.randn_like(qx).to(qx.device)
mean, std = sde.marginal_prob(qx, t)
xt = mean + px * std
# device things
px = px.to(device) # noise
qx = qx.to(device) # data
xt = xt.to(device) # interp
t = t.to(device)
# set up utils for reweighting if needed
if not likelihood_weighting:
weighting_fn = lambda t: sde.marginal_prob(torch.zeros_like(t), t)[1] ** 2
else:
weighting_fn = lambda t: sde.sde(torch.zeros_like(t), t)[1] ** 2
def grad_weighting_fn(t):
with torch.enable_grad():
t.requires_grad_()
return autograd.grad(weighting_fn(t).sum(), t)[0]
# boundary conditions
t0 = torch.zeros((len(px), 1)).to(px.device) + eps
t1 = torch.ones((len(qx), 1)).to(qx.device)
# the appropriate weighting functions
lambda_t = weighting_fn(t)
lambda_t0 = weighting_fn(t0)
lambda_t1 = weighting_fn(t1)
lambda_dt = grad_weighting_fn(t)
# reweighted version
term1 = (2 * scorenet(qx, t0)) * lambda_t0 # T=0 is data
term2 = (2 * scorenet(px, t1)) * lambda_t1 # T=1 is noise
# need to differentiate score wrt t
xt_score = scorenet(xt, t)
with torch.enable_grad():
t.requires_grad_(True)
xt_score_dt = autograd.grad(scorenet(xt, t).sum(), t, create_graph=True)[0]
term3 = (2 * xt_score_dt) * lambda_t
term4 = (2 * xt_score) * lambda_dt
term5 = (xt_score ** 2) * lambda_t
loss = term1 - term2 + term3 + term4 + term5
# 1-d so we can just take the mean rather than summing
return loss.mean()
def toy_joint_score_estimation(scorenet, samples, t, eps=1e-5, likelihood_weighting=False):
"""
in objective, T = [0, 1]
px, qx, xt: (batch_size, 1)
t: (batch_size, 1)
"""
# sample appropriate data
px, qx, xt = samples
px = px.to(device)
qx = qx.to(device)
xt = xt.to(device)
t = t.to(device)
# reweighted version
t0 = torch.zeros((len(px), 1)).to(px.device) + eps
t1 = torch.ones((len(qx), 1)).to(qx.device)
# get data score -- this is SSM!
xt.requires_grad_()
vectors = torch.randn_like(xt, device=xt.device)
score_x, score_t = scorenet(xt, t)
grad1 = torch.cat([score_x, score_t], dim=-1)
gradv = torch.sum(score_x * vectors)
grad2 = autograd.grad(gradv, xt, create_graph=True)[0]
# set up utils for reweighting if needed
# if not likelihood_weighting:
# weighting_fn = lambda t: torch.ones_like(t)
# else:
# weighting_fn = lambda t: sde.marginal_prob(torch.zeros_like(t), t)[1] ** 2
# def grad_weighting_fn(t):
# with torch.enable_grad():
# t.requires_grad_()
# return autograd.grad(weighting_fn(t).sum(), t)[0]
if likelihood_weighting:
lambda_t = (1 - t ** 2).squeeze()
lambda_t0 = (1 - t0.squeeze() ** 2)
lambda_t1 = (1 - t1.squeeze() ** 2 + eps ** 2)
lambda_dt = (-2 * t.squeeze())
else:
lambda_t = lambda_t0 = lambda_t1 = 1
lambda_dt = 0
# boundary conditions
t0 = torch.zeros((len(px), 1)).to(px.device) + eps
t1 = torch.ones((len(qx), 1)).to(qx.device) - eps
# the appropriate weighting functions
# lambda_t = weighting_fn(t)
# lambda_t0 = weighting_fn(t0)
# lambda_t1 = weighting_fn(t1)
# if not likelihood_weighting:
# lambda_dt = 0.
# else:
# lambda_dt = grad_weighting_fn(t)
# SSM loss (technically has the s(x,t)**2 term in there too)
ssm_loss1 = (torch.sum(grad1 * grad1, dim=-1) / 2.).view(
lambda_t.size()) * lambda_t
ssm_loss2 = torch.sum(vectors * grad2, dim=-1).view(
lambda_t.size()) * lambda_t
ssm_loss = ssm_loss1 + ssm_loss2
# rw_ssm_loss = ssm_loss * ssm_alpha
# reweighted version
term1 = (scorenet(px, t0)[-1]) * lambda_t0 # T=0 is noise
term2 = (scorenet(qx, t1)[-1]) * lambda_t1 # T=1 is data
# need to differentiate score wrt t
with torch.enable_grad():
t.requires_grad_(True)
xt_score_dt = \
autograd.grad(scorenet(xt, t)[-1].sum(), t, create_graph=True)[0]
term3 = (xt_score_dt) * lambda_t
term4 = score_t * lambda_dt
time_loss = term1 - term2 + term3 + term4
loss = ssm_loss + time_loss
# 1-d so we can just take the mean rather than summing
return loss.mean()
# TODO: this is used for toy timewise exp
def toy_timewise_score_estimation(scorenet, samples, t, eps=1e-5, likelihood_weighting=False):
"""
in objective, T = [0, 1]
px, qx, xt: (batch_size, 1)
t: (batch_size, 1)
we are reweighting the output of the score network (most recent version)
"""
px, qx, xt = samples
px = px.to(device)
qx = qx.to(device)
xt = xt.to(device)
t = t.to(device)
# reweighted version
t0 = torch.zeros((len(px), 1)).to(px.device) + eps
t1 = torch.ones((len(qx), 1)).to(qx.device)
if likelihood_weighting:
lambda_t = (1 - t ** 2).squeeze()
lambda_t0 = (1 - t0.squeeze() ** 2)
lambda_t1 = (1 - t1.squeeze() ** 2 + eps ** 2)
lambda_dt = (-2 * t.squeeze())
else:
lambda_t = lambda_t0 = lambda_t1 = 1
lambda_dt = 0
term1 = (2 * scorenet(px, t0)).squeeze() * lambda_t0
term2 = (2 * scorenet(qx, t1)).squeeze() * lambda_t1
# need to differentiate score wrt t
t.requires_grad_(True)
xt_score = scorenet(xt, t) # dim = 1
xt_score_dt = autograd.grad(xt_score.sum(), t, create_graph=True)[0]
term3 = (2 * xt_score_dt).squeeze() * lambda_t
term4 = (xt_score).squeeze() * lambda_dt
term5 = (xt_score ** 2).squeeze() * lambda_t
loss = term1 - term2 + term3 + term4 + term5
# 1-d so we can just take the mean rather than summing
return loss.mean(), term3.mean(), term4.mean(), term5.mean(), term1.mean(), term2.mean()
def get_step_fn(sde, train, joint=False, optimize_fn=None, reweight=False):
"""Create a one-step training/evaluation function.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE. (not used here)
optimize_fn: An optimization function.
reduce_mean: If `True`, average the loss across data dimensions. Otherwise sum the loss across data dimensions.
continuous: `True` indicates that the model is defined to take continuous time steps.
likelihood_weighting: If `True`, weight the mixture of score matching losses according to
https://arxiv.org/abs/2101.09258; otherwise use the weighting recommended by our paper.
Returns:
A one-step function for training or evaluation.
"""
if not joint:
# loss_fn = time_loss
loss_fn = toy_timewise_score_estimation
else:
# loss_fn = joint_loss
loss_fn = toy_joint_score_estimation
if reweight:
print('reweighting loss function!')
def step_fn(state, batch, t):
"""Running one step of training or evaluation.
This function will undergo `jax.lax.scan` so that multiple steps can be pmapped and jit-compiled together
for faster execution.
Args:
state: A dictionary of training information, containing the score model, optimizer,
EMA status, and number of optimization steps.
batch: A mini-batch of training/evaluation data.
Returns:
loss: The average loss value of this state.
"""
model = state['model']
if train:
model.train()
optimizer = state['optimizer']
optimizer.zero_grad()
if joint:
# loss, loss1, loss2, loss3, loss4, edge1, edge2 = loss_fn(model, batch, t)
loss = loss_fn(model, batch, t, likelihood_weighting=reweight)
else:
loss, loss1, loss2, loss3, edge1, edge2 = loss_fn(model, batch, t, likelihood_weighting=reweight)
loss.backward()
optimize_fn(optimizer, model.parameters(), step=state['step'])
state['step'] += 1
else:
model.eval()
with torch.no_grad():
if joint:
# loss, loss1, loss2, loss3, loss4, edge1, edge2 = loss_fn(model, batch, t)
loss = loss_fn(model, batch, t, likelihood_weighting=reweight)
else:
loss, loss1, loss2, loss3, edge1, edge2 = loss_fn(model, batch, t, likelihood_weighting=reweight)
# return loss in a single dictionary
loss_dict = {
'loss': loss.item(),
# 'loss1': loss1.item(),
# 'loss2': loss2.item(),
# 'loss3': loss3.item(),
# 'edge1': edge1.item(),
# 'edge2': edge2.item()
}
# ugh
# if joint:
# loss_dict['loss4'] = loss4.item()
return loss_dict
return step_fn