-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsde_lib.py
496 lines (424 loc) · 15.1 KB
/
sde_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
"""Abstract SDE classes, Reverse SDE, and VE/VP SDEs."""
import abc
import torch
import numpy as np
import torch.nn.functional as F
def logit_transform(image, lambd=1e-6):
image = lambd + (1 - 2 * lambd) * image
image = torch.log(image) - torch.log1p(-image)
ldj = F.softplus(image) + F.softplus(-image) + np.log(1 - 2 * lambd)
ldj = ldj.view(image.size(0), -1) # (batch,)
return image, ldj
class SDE(abc.ABC):
"""SDE abstract class. Functions are designed for a mini-batch of inputs."""
def __init__(self, N):
"""Construct an SDE.
Args:
N: number of discretization time steps.
"""
super().__init__()
self.N = N
@property
@abc.abstractmethod
def T(self):
"""End time of the SDE."""
pass
@abc.abstractmethod
def sde(self, x, t):
pass
@abc.abstractmethod
def marginal_prob(self, x, t):
"""Parameters to determine the marginal distribution of the SDE, $p_t(x)$."""
pass
@abc.abstractmethod
def prior_sampling(self, shape):
"""Generate one sample from the prior distribution, $p_T(x)$."""
pass
@abc.abstractmethod
def prior_logp(self, z):
"""Compute log-density of the prior distribution.
Useful for computing the log-likelihood via probability flow ODE.
Args:
z: latent code
Returns:
log probability density
"""
pass
def discretize(self, x, t):
"""Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i.
Useful for reverse diffusion sampling and probabiliy flow sampling.
Defaults to Euler-Maruyama discretization.
Args:
x: a torch tensor
t: a torch float representing the time step (from 0 to `self.T`)
Returns:
f, G
"""
dt = 1 / self.N
drift, diffusion = self.sde(x, t)
f = drift * dt
G = diffusion * torch.sqrt(torch.tensor(dt, device=t.device))
return f, G
def reverse(self, score_fn, probability_flow=False):
"""Create the reverse-time SDE/ODE.
Args:
score_fn: A time-dependent score-based model that takes x and t and returns the score.
probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling.
"""
N = self.N
T = self.T
sde_fn = self.sde
discretize_fn = self.discretize
# Build the class for reverse-time SDE.
class RSDE(self.__class__):
def __init__(self):
self.N = N
self.probability_flow = probability_flow
@property
def T(self):
return T
def sde(self, x, t):
"""Create the drift and diffusion functions for the reverse SDE/ODE."""
drift, diffusion = sde_fn(x, t)
score = score_fn(x, t)
# TODO: added this
if isinstance(score, list) or isinstance(score, tuple):
score = score[0]
drift = drift - diffusion[:, None, None, None] ** 2 * score * (0.5 if self.probability_flow else 1.)
# Set the diffusion function to zero for ODEs.
diffusion = 0. if self.probability_flow else diffusion
return drift, diffusion
def discretize(self, x, t):
"""Create discretized iteration rules for the reverse diffusion sampler."""
f, G = discretize_fn(x, t)
# TODO: added this
score = score_fn(x, t)
if isinstance(score, list) or isinstance(score, tuple):
score = score[0]
rev_f = f - G[:, None, None, None] ** 2 * score * (0.5 if self.probability_flow else 1.)
rev_G = torch.zeros_like(G) if self.probability_flow else G
return rev_f, rev_G
return RSDE()
class VPSDE(SDE):
def __init__(self, beta_min=0.1, beta_max=20, N=1000):
"""Construct a Variance Preserving SDE.
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1. - self.discrete_betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
@property
def T(self):
return 1
# TODO: ugly code for compatibility with z-space training and x-space training;
# make sure to clean this up later
def sde(self, x, t):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
if len(x.size()) < 4:
drift = -0.5 * beta_t[:, None] * x
else:
drift = -0.5 * beta_t[:, None, None, None] * x
diffusion = torch.sqrt(beta_t)
return drift, diffusion
def marginal_prob(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
if len(x.size()) < 4:
mean = torch.exp(log_mean_coeff[:, None]) * x
else:
mean = torch.exp(log_mean_coeff[:, None, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def prior_sampling(self, shape):
return torch.randn(*shape)
def prior_logp(self, z):
shape = z.shape
n = z.size(0)
N = np.prod(shape[1:])
logps = -N / 2. * np.log(2 * np.pi) - torch.sum(z.view(n, -1) ** 2, dim=-1) / 2.
return logps
def discretize(self, x, t):
"""DDPM discretization."""
timestep = (t * (self.N - 1) / self.T).long()
beta = self.discrete_betas.to(x.device)[timestep]
alpha = self.alphas.to(x.device)[timestep]
sqrt_beta = torch.sqrt(beta)
if len(x.size()) < 4:
f = torch.sqrt(alpha)[:, None] * x - x
else:
f = torch.sqrt(alpha)[:, None, None, None] * x - x
G = sqrt_beta
return f, G
class Z_VPSDE(SDE):
def __init__(self, flow, beta_min=0.1, beta_max=20, N=1000):
"""Construct a Variance Preserving SDE.
NOTE: this only works for MintNet, NICE, and RealNVP due to the preprocessing used!
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
self.flow = flow
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1. - self.discrete_betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
@property
def T(self):
return 1
def sde(self, x, t):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
# data will be in z-space due to flow, so 2-D
drift = -0.5 * beta_t[:, None, None, None] * x
diffusion = torch.sqrt(beta_t)
return drift, diffusion
def marginal_prob(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
mean = torch.exp(log_mean_coeff[:, None, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def prior_sampling(self, shape):
"""
draw a sample x ~ p(x) = f(z), where z ~ N(0,I)
:param shape:
:return:
"""
# you shouldn't be calling this
raise NotImplementedError
# TODO (HACK): hardcoded cuda and module.sampling is not good
z = torch.randn(*shape, device='cuda')
with torch.no_grad():
# TODO: note that samples will be centered to [-1, +1]
x = self.flow.module.sampling(z)
# return torch.randn(*shape)
return x
def prior_logp(self, flow, x):
# evaluates log p(x), where p(x) is a flow trained on MNIST
n = x.size(0)
shape = x.shape
N = np.prod(shape[1:])
with torch.no_grad():
flow.eval()
# TODO: input to flow needs to be uniformly dequantized and logit-transformed
# TODO (HACK)
# undo rescaling, then logit transform
x = torch.clamp((x+1)/2., 0., 1.)
x, log_det_logit = logit_transform(x)
z, flow_log_det = flow(x, reverse=False)
# N(0,I) log probability
log_prob_z = -N / 2. * np.log(2 * np.pi) - torch.sum(z.view(n, -1) ** 2, dim=-1) / 2.
log_p = log_prob_z + flow_log_det + log_det_logit.sum(-1)
# we need another log_det for undoing the rescaling operation
log_p = log_p - N * np.log(2)
return log_p
def discretize(self, x, t):
"""DDPM discretization."""
timestep = (t * (self.N - 1) / self.T).long()
beta = self.discrete_betas.to(x.device)[timestep]
alpha = self.alphas.to(x.device)[timestep]
sqrt_beta = torch.sqrt(beta)
if len(x.size()) < 4:
f = torch.sqrt(alpha)[:, None] * x - x
else:
f = torch.sqrt(alpha)[:, None, None, None] * x - x
G = sqrt_beta
return f, G
# TODO (HACK): you eventually want to get rid of this SDE @____@
class Z_RQNSF_VPSDE(SDE):
def __init__(self, flow, beta_min=0.1, beta_max=20, N=1000):
"""Construct a Variance Preserving SDE.
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
self.flow = flow
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1. - self.discrete_betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
@property
def T(self):
return 1
def sde(self, x, t):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
# data will be in z-space due to flow, so 2-D
drift = -0.5 * beta_t[:, None, None, None] * x
diffusion = torch.sqrt(beta_t)
return drift, diffusion
def marginal_prob(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
mean = torch.exp(log_mean_coeff[:, None, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def prior_sampling(self, shape):
"""
draw a sample x ~ p(x) = f(z), where z ~ N(0,I)
:param shape:
:return:
"""
# you shouldn't be calling this
raise NotImplementedError
# TODO (HACK): hardcoded cuda and module.sampling is not good
z = torch.randn(*shape, device='cuda')
with torch.no_grad():
# TODO: note that samples will be centered to [-1, +1]
x = self.flow.module.sampling(z)
# return torch.randn(*shape)
return x
def prior_logp(self, flow, x):
# evaluates log p(x), where p(x) is a flow trained on MNIST
n = x.size(0)
shape = x.shape
N = np.prod(shape[1:])
with torch.no_grad():
flow.eval()
# TODO: input to flow needs to be uniformly dequantized and logit-transformed
# TODO (HACK)
# undo rescaling, then logit transform
x = (x+1.)/2.
x *= 256.
log_p = flow.module._log_prob(x, context=None)
# we need another log_det for undoing the rescaling operation
log_p = log_p + N * np.log(256)
log_p = log_p - N * np.log(2)
return log_p
def discretize(self, x, t):
"""DDPM discretization."""
timestep = (t * (self.N - 1) / self.T).long()
beta = self.discrete_betas.to(x.device)[timestep]
alpha = self.alphas.to(x.device)[timestep]
sqrt_beta = torch.sqrt(beta)
if len(x.size()) < 4:
f = torch.sqrt(alpha)[:, None] * x - x
else:
f = torch.sqrt(alpha)[:, None, None, None] * x - x
G = sqrt_beta
return f, G
# TODO (HACK): you eventually want to get rid of this SDE @____@
class Z_RQNSF_TFORM_VPSDE(SDE):
def __init__(self, flow, beta_min=0.1, beta_max=20, N=1000):
"""Construct a Variance Preserving SDE.
Args:
beta_min: value of beta(0)
beta_max: value of beta(1)
N: number of discretization steps
"""
super().__init__(N)
print('initialized Z_RQNSF_TFORM_VPSDE!')
self.flow = flow
self.beta_0 = beta_min
self.beta_1 = beta_max
self.N = N
self.discrete_betas = torch.linspace(beta_min / N, beta_max / N, N)
self.alphas = 1. - self.discrete_betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_1m_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
@property
def T(self):
return 1
def sde(self, x, t):
beta_t = self.beta_0 + t * (self.beta_1 - self.beta_0)
# data will be in z-space due to flow, so 2-D
drift = -0.5 * beta_t[:, None, None, None] * x
diffusion = torch.sqrt(beta_t)
return drift, diffusion
def marginal_prob(self, x, t):
log_mean_coeff = -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
mean = torch.exp(log_mean_coeff[:, None, None, None]) * x
std = torch.sqrt(1. - torch.exp(2. * log_mean_coeff))
return mean, std
def prior_sampling(self, shape):
"""
draw a sample x ~ p(x) = f(z), where z ~ N(0,I)
:param shape:
:return:
"""
# you shouldn't be calling this
raise NotImplementedError
# TODO (HACK): hardcoded cuda and module.sampling is not good
z = torch.randn(*shape, device='cuda')
with torch.no_grad():
# TODO: note that samples will be centered to [-1, +1]
x = self.flow.module.sampling(z)
# return torch.randn(*shape)
return x
def prior_logp(self, flow, x):
# evaluates log p(x), where p(x) is a flow trained on MNIST
n = x.size(0)
shape = x.shape
N = np.prod(shape[1:])
with torch.no_grad():
flow.eval()
# TODO: input to flow needs to be uniformly dequantized and logit-transformed
# TODO (HACK)
# undo rescaling, then logit transform
x = (x+1.)/2.
x *= 256.
# TODO: this will only be called for validation/test
log_p = flow.module._log_prob(torch.clamp(x, 0., 256.), context=None,
transform=True, train=False)
# try:
# log_p = flow.module._log_prob(x, context=None, transform=True, train=False)
# except:
# log_p = flow.module._log_prob(torch.clamp(x, 0., 256.), context=None, transform=True, train=False)
# we need another log_det for undoing the rescaling operation
log_p = log_p + N * np.log(256)
log_p = log_p - N * np.log(2)
return log_p
def discretize(self, x, t):
"""DDPM discretization."""
timestep = (t * (self.N - 1) / self.T).long()
beta = self.discrete_betas.to(x.device)[timestep]
alpha = self.alphas.to(x.device)[timestep]
sqrt_beta = torch.sqrt(beta)
if len(x.size()) < 4:
f = torch.sqrt(alpha)[:, None] * x - x
else:
f = torch.sqrt(alpha)[:, None, None, None] * x - x
G = sqrt_beta
return f, G
class ToyInterpXt(SDE):
def __init__(self, t_min=0., t_max=1., N=1000):
"""Construct a linear interpolation procedure. Note that this is not necessarily an SDE.
"""
super().__init__(N)
self.t_min = t_min
self.t_max = t_max
self.N = N
@property
def T(self):
return 1
def sde(self, x, t):
raise NotImplementedError
def marginal_prob(self, x, t):
std = torch.sqrt(1 - t**2)
mean = x * t
return mean, std
def prior_sampling(self, shape):
return torch.randn(*shape)
def prior_logp(self, z):
shape = z.shape
N = np.prod(shape[1:])
return -N / 2. * np.log(2 * np.pi) - torch.sum(z ** 2, dim=-1) / 2.
def discretize(self, x, t):
raise NotImplementedError