-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
92 lines (81 loc) · 3.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
"""Training and evaluation"""
from absl import app
from absl import flags
from ml_collections.config_flags import config_flags
import logging
import os
import tensorflow as tf
import wandb
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=True)
flags.DEFINE_string("workdir", None, "Work directory.")
flags.DEFINE_enum("mode", None, ["train", "eval"], "Running mode: train or eval")
flags.DEFINE_string("eval_folder", "eval",
"The folder name for storing evaluation results")
flags.DEFINE_string("doc", None, "exp_name")
flags.DEFINE_bool("toy", False, "whether to run toy experiment")
flags.DEFINE_bool("flow", False, "whether to encode the data into latent space using a pre-trained flow")
flags.mark_flags_as_required(["workdir", "config", "mode"])
def main(argv):
mode = None
if FLAGS.mode == 'eval':
mode = 'disabled'
# TODO: set up wandb and replace names here
wandb.init(
project='your-project-here',
entity='your-project-here',
name=FLAGS.doc,
mode=mode
)
if FLAGS.mode == "train":
# Create the working directory
tf.io.gfile.makedirs(FLAGS.workdir)
# Set logger so that it outputs to both console and file
# Make logging work for both disk and Google Cloud Storage
gfile_stream = open(os.path.join(FLAGS.workdir, 'stdout.txt'), 'w')
handler = logging.StreamHandler(gfile_stream)
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler)
logger.setLevel('INFO')
# save config
print(FLAGS.config)
with open(os.path.join(FLAGS.workdir, 'config.txt'), 'w') as f:
print(FLAGS.config, file=f)
# Run the training pipeline
if not FLAGS.toy:
if not FLAGS.flow:
import run_lib
print('running normal score matching method without any flows!')
run_lib.train(FLAGS.config, FLAGS.workdir)
else:
logger.info("Leveraging pre-trained flow model for score estimation!")
if 'rq_nsf' in FLAGS.config.training.z_space_model:
import run_lib_rqnsf_flow
# TODO (HACK): preprocessing for each type of flow is annoying, but eventually want to merge these two files
print('running rq_nsf-specific training code')
run_lib_rqnsf_flow.train(FLAGS.config, FLAGS.workdir)
else:
import run_lib_flow
run_lib_flow.train(FLAGS.config, FLAGS.workdir)
else:
import toy_run_lib
toy_run_lib.train(FLAGS.config, FLAGS.workdir)
elif FLAGS.mode == "eval":
# Run the evaluation pipeline
if FLAGS.flow:
import run_lib_rqnsf_flow
if 'rq_nsf' in FLAGS.config.training.z_space_model:
run_lib_rqnsf_flow.evaluate(FLAGS.config, FLAGS.workdir, FLAGS.eval_folder)
else:
import run_lib_flow
run_lib_flow.evaluate(FLAGS.config, FLAGS.workdir, FLAGS.eval_folder)
else:
import run_lib
run_lib.evaluate(FLAGS.config, FLAGS.workdir, FLAGS.eval_folder)
else:
raise ValueError(f"Mode {FLAGS.mode} not recognized.")
if __name__ == "__main__":
app.run(main)