forked from avehtari/BDA_R_demos
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoisson_gp.stan
92 lines (85 loc) · 2.78 KB
/
poisson_gp.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
functions {
vector gp_pred_rng(vector x2,
vector f1, vector x1,
real alpha, real lscale, real jitter2) {
// rng for predictive distribution of latent values at test locations
int N1 = rows(x1);
int N2 = rows(x2);
vector[N2] f2;
{
matrix[N1, N1] K = cov_exp_quad(to_array_1d(x1), alpha, lscale)
+ diag_matrix(rep_vector(jitter2, N1));
matrix[N1, N1] L_K = cholesky_decompose(K);
vector[N1] L_K_div_f1 = mdivide_left_tri_low(L_K, f1);
vector[N1] K_div_f1 = mdivide_right_tri_low(L_K_div_f1', L_K)';
matrix[N1, N2] k_x1_x2 = cov_exp_quad(to_array_1d(x1), to_array_1d(x2), alpha, lscale);
vector[N2] f2_mu = (k_x1_x2' * K_div_f1);
matrix[N1, N2] v_pred = mdivide_left_tri_low(L_K, k_x1_x2);
matrix[N2, N2] cov_f2 = cov_exp_quad(to_array_1d(x2), alpha, lscale) - v_pred' * v_pred + diag_matrix(rep_vector(jitter2, N2));
f2 = multi_normal_rng(f2_mu, cov_f2);
}
return f2;
}
}
data {
int<lower=1> N;
vector[N] x;
int<lower=0> y[N];
real<lower=0> Ey; // expected count
int<lower=1> N_predict;
vector[N_predict] x_predict;
real<lower=0> alpha0; // lscale prior parameter
real<lower=0> beta0; // lscale prior parameter
}
transformed data {
real jitter2 = 1e-6; // jitter to stabilize covariance matrices
vector[N] xc; // centered version of x
vector[N_predict] xcp; // centered version of x_predict
real xmean;
xmean = mean(x);
xc = x-xmean;
xcp = x_predict-xmean;
}
parameters {
real<lower=0> lscale;
real<lower=0> alpha;
real a;
real b;
vector[N] z;
}
model {
vector[N] f;
matrix[N, N] cov = cov_exp_quad(to_array_1d(xc), alpha, lscale)
+ diag_matrix(rep_vector(jitter2, N));
matrix[N, N] L_cov = cholesky_decompose(cov);
// non-centered parameterization
z ~ normal(0,1);
f = L_cov*z;
// priors
lscale ~ inv_gamma(alpha0, beta0);
alpha ~ normal(0, .5);
a ~ normal(0, .1);
b ~ normal(0, .1);
// observation model
y ~ poisson_log(log(Ey) + a + xc*b + f);
}
generated quantities {
vector[N_predict] mu_predict;
vector[N_predict] y_predict;
vector[N] log_lik;
{
vector[N] f;
vector[N_predict] f_predict;
matrix[N, N] cov = cov_exp_quad(to_array_1d(xc), alpha, lscale)
+ diag_matrix(rep_vector(jitter2, N));
matrix[N, N] L_cov = cholesky_decompose(cov);
f = L_cov*z;
f_predict = gp_pred_rng(xcp, f, xc, alpha, lscale, jitter2);
for (n in 1:N_predict)
mu_predict[n] = exp(log(Ey) + a + xcp[n]*b + f_predict[n]);
for (n in 1:N_predict)
y_predict[n] = poisson_log_rng(log(Ey) + a + xcp[n]*b + f_predict[n]);
for (n in 1:N)
log_lik[n] = poisson_log_lpmf(y[n] | log(Ey) + a + xc[n]*b + f[n]);
}
}