From a7344b4151e5bea7f2d9154f8011dcd426413db3 Mon Sep 17 00:00:00 2001 From: Eric Date: Mon, 16 Dec 2024 15:24:36 -0800 Subject: [PATCH] Move convergence file --- OrderedSemigroups/OrderedGroup/Approximate.lean | 2 +- OrderedSemigroups/{ => OrderedGroup}/Convergence.lean | 10 ++++++++++ 2 files changed, 11 insertions(+), 1 deletion(-) rename OrderedSemigroups/{ => OrderedGroup}/Convergence.lean (96%) diff --git a/OrderedSemigroups/OrderedGroup/Approximate.lean b/OrderedSemigroups/OrderedGroup/Approximate.lean index f49ffa8..1e73925 100644 --- a/OrderedSemigroups/OrderedGroup/Approximate.lean +++ b/OrderedSemigroups/OrderedGroup/Approximate.lean @@ -1,5 +1,5 @@ import OrderedSemigroups.OrderedGroup.ArchimedeanGroup -import OrderedSemigroups.Convergence +import OrderedSemigroups.OrderedGroup.Convergence import OrderedSemigroups.Basic /-! diff --git a/OrderedSemigroups/Convergence.lean b/OrderedSemigroups/OrderedGroup/Convergence.lean similarity index 96% rename from OrderedSemigroups/Convergence.lean rename to OrderedSemigroups/OrderedGroup/Convergence.lean index 014fdbf..0e63e84 100644 --- a/OrderedSemigroups/Convergence.lean +++ b/OrderedSemigroups/OrderedGroup/Convergence.lean @@ -1,5 +1,15 @@ import Mathlib.Analysis.Normed.Order.Lattice +/-! +# Convergence of a particular sequence + +This file proves that sequences satisfying a particular condition converge. +This is used in the proof of Holder's theorem to show that the +sequence of approximations do converge. + +-/ + + open Filter lemma arch_nat {e C : ℝ} (C_pos : C > 0) (e_pos : e > 0) : ∃n : ℕ+, 1 / n < e/(2*C) := by