diff --git a/OrderedSemigroups.lean b/OrderedSemigroups.lean index 888c32b..1f74f7d 100644 --- a/OrderedSemigroups.lean +++ b/OrderedSemigroups.lean @@ -2,4 +2,4 @@ -- Import modules here that should be built as part of the library. import «OrderedSemigroups».Archimedean import «OrderedSemigroups».MonoidToGroup -import OrderedSemigroups.OrderedGroup.Approximate +import OrderedSemigroups.OrderedGroup.Holder diff --git a/OrderedSemigroups/OrderedGroup/Approximate.lean b/OrderedSemigroups/OrderedGroup/Approximate.lean index e4468e4..7fdd8aa 100644 --- a/OrderedSemigroups/OrderedGroup/Approximate.lean +++ b/OrderedSemigroups/OrderedGroup/Approximate.lean @@ -365,3 +365,15 @@ theorem injective_φ : Function.Injective (φ f) := by have zero_lt_one : (0 : ℝ) < 1 := Real.zero_lt_one have : 0 < 0 := lt_imp_lt_of_le_imp_le (fun a ↦ zero_le_one) zero_lt_one exact Nat.not_succ_le_zero 0 this + +theorem strict_order_preserving_φ {a b : α}: a ≤ b ↔ (φ f a) ≤ (φ f b) := by + constructor + · exact fun a_1 ↦ order_preserving_φ f a_1 + · intro φa_le_φb + by_contra h + simp at h + have := order_preserving_φ f h.le + have : (φ f) a = (φ f) b := PartialOrder.le_antisymm _ _ φa_le_φb this + have := injective_φ f this + rw [this] at h + exact (lt_self_iff_false b).mp h diff --git a/OrderedSemigroups/OrderedGroup/Holder.lean b/OrderedSemigroups/OrderedGroup/Holder.lean new file mode 100644 index 0000000..10c3dd3 --- /dev/null +++ b/OrderedSemigroups/OrderedGroup/Holder.lean @@ -0,0 +1,63 @@ +import OrderedSemigroups.OrderedGroup.Approximate + +universe u +variable {α : Type u} + +/-- + Every left linear ordered group that is Archimedean + is monoid order isomorphic to a subgroup of `ℝ`. +-/ +theorem holders_theorem [LeftLinearOrderedGroup α] (arch : archimedean_group α) : + ∃G : Subgroup (Multiplicative ℝ), Nonempty (α ≃*o G) := by + by_cases h : ∃f : α, 1 < f + · obtain ⟨f, f_pos⟩ := h + set φ := @φ _ _ f (Fact.mk arch) (Fact.mk f_pos) with φ_def + use (MonoidHom.range φ) + rw [←exists_true_iff_nonempty] + set φ' : α → (MonoidHom.range φ) := fun a ↦ ⟨φ a, by simp⟩ + have φ'_surj : Function.Surjective φ' := by + simp [Function.Surjective] + intro a x h + use x + simp [φ', h] + have φ'_inj : Function.Injective φ' := by + simp [φ', Function.Injective] + intro a b hab + have : Function.Injective φ := @injective_φ _ _ f (Fact.mk arch) (Fact.mk f_pos) + exact this hab + use { + toFun := φ' + invFun := φ'.invFun + left_inv := by exact Function.leftInverse_invFun φ'_inj + right_inv := Function.rightInverse_invFun φ'_surj + map_mul' := by simp [φ'] + map_le_map_iff' := by + simp [φ'] + exact fun {a b} ↦ Iff.symm (@strict_order_preserving_φ _ _ f (Fact.mk arch) (Fact.mk f_pos) a b) + } + · simp at h + by_cases not_one : ∃a : α, a ≠ 1 + · obtain ⟨a, ha⟩ := not_one + simp at ha + obtain a_lt_one | a_eq_one | one_lt_a := lt_trichotomy a 1 + · have : 1 < a⁻¹ := by exact one_lt_inv_of_inv a_lt_one + have : 1 < 1 := by exact lt_imp_lt_of_le_imp_le (fun a_1 ↦ h a⁻¹) this + exact False.elim ((lt_self_iff_false 1).mp this) + · contradiction + · have : 1 < 1 := by exact lt_imp_lt_of_le_imp_le (fun a_1 ↦ h a) one_lt_a + exact False.elim ((lt_self_iff_false 1).mp this) + · simp at not_one + use ⊥ + rw [←exists_true_iff_nonempty] + use { + toFun := fun a ↦ 1 + invFun := fun a ↦ 1 + left_inv := by simp [Function.LeftInverse, not_one] + right_inv := by + simp [Function.RightInverse, Function.LeftInverse] + intro a ha + simp [ha] + rfl + map_mul' := by simp + map_le_map_iff' := by simp [not_one] + }