forked from szilard/benchm-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2c-DL-h2o-v3_6.R
37 lines (22 loc) · 929 Bytes
/
2c-DL-h2o-v3_6.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
library(h2o)
for (size in c(0.0001,0.001,0.01,0.1,1,10)) {
print(size)
h2o.init(max_mem_size="250g", nthreads=-1)
Sys.sleep(3)
dx_train <- h2o.importFile(paste0("higgs-train-",format(size, scientific=FALSE),"m.csv"))
dx_valid <- h2o.importFile("higgs-valid.csv")
dx_test <- h2o.importFile("higgs-test.csv")
dx_train[,1] <- as.factor(dx_train[,1])
dx_valid[,1] <- as.factor(dx_valid[,1])
dx_test[,1] <- as.factor(dx_test[,1])
print(system.time({
md <- h2o.deeplearning(x = 2:ncol(dx_train), y = 1, training_frame = dx_train,
validation_frame = dx_valid,
activation = "RectifierWithDropout", hidden = c(200,200,200,200), epochs = 100,
l1 = 1e-5, l2 = 1e-5, hidden_dropout_ratios=c(0.2,0.1,0.1,0),
stopping_rounds = 3, stopping_metric = "AUC", stopping_tolerance = 0)
}))
print(h2o.performance(md, dx_test)@metrics$AUC)
h2o.shutdown(prompt = FALSE)
Sys.sleep(3)
}