-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedge.py
195 lines (161 loc) · 7.4 KB
/
edge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from collections import deque
import os
import numpy as np
import argparse
import cv2
import cv2.cv as cv
from random import randint
# import imutils
cam = cv2.VideoCapture(1)
pts = deque(maxlen=64)
def add_chip_to_board(chip, color):
if minX == None or minY == None or maxY == None or maxY == None: return
try:
x_index = (chip[0] - minX) / averageXDistance
y_index = 9 - ((chip[1] - minY) / averageYDistance)
board_state[x_index][y_index] = color
except:
pass
def show_scoring_move(row, column, color):
if minX == None or minY == None or maxY == None or maxY == None: return
try:
move_x = row * averageXDistance + minX + averageXDistance - 70 + randint(0, 3)
move_y = (9 - column) * averageYDistance + minY + 45 + randint(0, 3)
if color == "B":
bgr = (255, 0, 0)
if color == "G":
bgr = (0, 255, 0)
cv2.circle(img, (move_x, move_y), 32, bgr, 2)
except:
pass
while True:
print "-"
board_state = [
["W", "O", "O", "O", "O", "O", "O", "O", "O", "W"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
["W", "O", "O", "O", "O", "O", "O", "O", "O", "W"],
]
minX = None
minY = None
maxX = None
maxY = None
averageXDistance = None
averageYDistance = None
ret_val, img = cam.read()
orig = img
# img = img[10:950, 540:3200]
# img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cimg = cv2.cvtColor(orig,cv2.COLOR_BGR2GRAY)
# bilateral_filtered_image = cv2.bilateralFilter(img, 5, 175, 175)
#
# edge_detected_image = cv2.Canny(bilateral_filtered_image, 60, 150)
#
# contours, _= cv2.findContours(edge_detected_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#
# contour_list = []
# for contour in contours:
# approx = cv2.approxPolyDP(contour,0.01*cv2.arcLength(contour,True),True)
# area = cv2.contourArea(contour)
# if (area > 800):
# contour_list.append(contour)
# img = edge_detected_image
# img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# cv2.drawContours(img, contour_list, -1, (0, 255, 255), 1)
boundaries = cv2.HoughCircles(cimg,cv.CV_HOUGH_GRADIENT,1,10,param1=50,param2=30,minRadius=27,maxRadius=31)
if isinstance(boundaries, np.ndarray):
boundaries = np.uint16(np.around(boundaries))
for i in boundaries[0,:]:
cv2.circle(img, (i[0], i[1]), 28, (255, 255, 255), cv.CV_FILLED)
if minX == None or i[0] < minX:
minX = i[0] - 70
if minY == None or i[1] < minY:
minY = i[1] - 45
if maxX == None or i[0] > maxX:
maxX = i[0] + 70
if maxY == None or i[1] > maxY:
maxY = i[1] + 45
averageXDistance = (maxX - minX) / 10
averageYDistance = (maxY - minY) / 10
hsv = cv2.cvtColor(orig, cv2.COLOR_BGR2HSV)
lower_blue = np.array([110,50,50])
upper_blue = np.array([130,255,255])
blue_mask = cv2.inRange(hsv, lower_blue, upper_blue)
blue_mask = cv2.erode(blue_mask, None, iterations=2)
blue_mask = cv2.dilate(blue_mask, None, iterations=2)
blue_cnts = cv2.findContours(blue_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
blue_chips = []
if len(blue_cnts) > 0:
for c in blue_cnts:
((x, y), radius) = cv2.minEnclosingCircle(c)
if radius > 25 and radius < 50 and x > minX and y > minY and x < maxX and y < maxY:
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
add_chip_to_board(center, "B")
cv2.circle(img, (int(x), int(y)), int(radius), (255, 0, 0), cv.CV_FILLED)
lower_green = np.array([50,50,50])
upper_green = np.array([90,255,255])
green_mask = cv2.inRange(hsv, lower_green, upper_green)
green_mask = cv2.erode(green_mask, None, iterations=2)
green_mask = cv2.dilate(green_mask, None, iterations=2)
green_cnts = cv2.findContours(green_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(green_cnts) > 0:
for c in green_cnts:
((x, y), radius) = cv2.minEnclosingCircle(c)
if radius > 25 and radius < 40 and x > minX and y > minY and x < maxX and y < maxY:
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
add_chip_to_board(center, "G")
cv2.circle(img, (int(x), int(y)), int(radius), (0, 255, 0), cv.CV_FILLED)
lower_red = np.array([160,50,50])
upper_red = np.array([210,255,255])
red_mask = cv2.inRange(hsv, lower_red, upper_red)
red_mask = cv2.erode(red_mask, None, iterations=2)
red_mask = cv2.dilate(red_mask, None, iterations=2)
red_cnts = cv2.findContours(red_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(red_cnts) > 0:
for c in red_cnts:
((x, y), radius) = cv2.minEnclosingCircle(c)
if radius > 25 and radius < 40 and x > minX and y > minY and x < maxX and y < maxY:
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
add_chip_to_board(center, "R")
cv2.circle(img, (int(x), int(y)), int(radius), (0, 0, 255), cv.CV_FILLED)
if isinstance(boundaries, np.ndarray) and boundaries.size == 12 and minY != None and maxY != None and minX != None and maxX != None:
try:
font = cv2.FONT_HERSHEY_SIMPLEX
score = os.popen('ruby solver.rb ' + ''.join(map(str, board_state))).read().splitlines()
print score
blue_scoring_move = eval(score[0])
green_scoring_move = eval(score[1])
for move in blue_scoring_move:
show_scoring_move(move[0], move[1], "B")
for move in green_scoring_move:
show_scoring_move(move[0], move[1], "G")
blue_score = score[2]
green_score = score[3]
# print blue_scoring_move
# cv2.rectangle(img, (minX, minY1), (minX + 300, minY + 50), (255,255,255), 2)
cv2.rectangle(img, (minX + 50, minY - 50), (minX + 400, minY), (255,255,255), cv.CV_FILLED)
if blue_score == "2":
os.system('say Blue won!')
if green_score == "2":
os.system('say Green won!')
cv2.putText(img, "Blue: " + blue_score, (minX + 100, minY - 10), font, 1, (255,0,0), 2)
cv2.putText(img, "Green: " + green_score, (minX + 250, minY - 10), font, 1, (0,205,0), 2)
for angle in np.arange(0, 180, 90):
# rotated = imutils.rotate_bound(img[minY:maxY,minX:maxX], angle)
rotated = img#[minY-10:maxY,minX:maxX]
cv2.imshow('final', rotated)
# cv2.imshow('orig', orig)
# cv2.imshow('mask', mask[minY-45:maxY+45,minX-70:maxX+70])
except:
pass
if cv2.waitKey(1) == 27:
break # esc