-
Notifications
You must be signed in to change notification settings - Fork 5
/
i3d_pt_demo.py
107 lines (88 loc) · 3.59 KB
/
i3d_pt_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import argparse
import numpy as np
import torch
from src.i3dpt import I3D
rgb_pt_checkpoint = 'model/model_rgb.pth'
def run_demo(args):
kinetics_classes = [x.strip() for x in open(args.classes_path)]
def get_scores(sample, model):
sample_var = torch.autograd.Variable(torch.from_numpy(sample).cuda(), volatile=True)
out_var, out_logit = model(sample_var)
out_tensor = out_var.data.cpu()
top_val, top_idx = torch.sort(out_tensor, 1, descending=True)
print(
'Top {} classes and associated probabilities: '.format(args.top_k))
for i in range(args.top_k):
print('[{}]: {:.6E}'.format(kinetics_classes[top_idx[0, i]],
top_val[0, i]))
return out_logit
# Rung RGB model
if args.rgb:
i3d_rgb = I3D(num_classes=400, modality='rgb')
i3d_rgb.eval()
i3d_rgb.load_state_dict(torch.load(args.rgb_weights_path))
i3d_rgb.cuda()
rgb_sample = np.load(args.rgb_sample_path).transpose(0, 4, 1, 2, 3)
for i in xrange(100000):
out_rgb_logit = get_scores(rgb_sample, i3d_rgb)
# Run flow model
if args.flow:
i3d_flow = I3D(num_classes=400, modality='flow')
i3d_flow.eval()
i3d_flow.load_state_dict(torch.load(args.flow_weights_path))
i3d_flow.cuda()
flow_sample = np.load(args.flow_sample_path).transpose(0, 4, 1, 2, 3)
out_flow_logit = get_scores(flow_sample, i3d_flow)
# Joint model
if args.flow and args.rgb:
out_logit = out_rgb_logit + out_flow_logit
out_softmax = torch.nn.functional.softmax(out_logit, 1).data.cpu()
top_val, top_idx = torch.sort(out_softmax, 1, descending=True)
print('===== Final predictions ====')
print('logits proba class '.format(args.top_k))
for i in range(args.top_k):
logit_score = out_logit[0, top_idx[0, i]].data.item()
print('{:.6e} {:.6e} {}'.format(logit_score, top_val[0, i],
kinetics_classes[top_idx[0, i]]))
if __name__ == "__main__":
parser = argparse.ArgumentParser('Runs inflated inception v1 network on\
cricket sample from tensorflow demo (generate the network weights with\
i3d_tf_to_pt.py first)')
# RGB arguments
parser.add_argument(
'--rgb', action='store_true', help='Evaluate RGB pretrained network')
parser.add_argument(
'--rgb_weights_path',
type=str,
default='model/model_rgb.pth',
help='Path to rgb model state_dict')
parser.add_argument(
'--rgb_sample_path',
type=str,
default='data/kinetic-samples/v_CricketShot_g04_c01_rgb.npy',
help='Path to kinetics rgb numpy sample')
# Flow arguments
parser.add_argument(
'--flow', action='store_true', help='Evaluate flow pretrained network')
parser.add_argument(
'--flow_weights_path',
type=str,
default='model/model_flow.pth',
help='Path to flow model state_dict')
parser.add_argument(
'--flow_sample_path',
type=str,
default='data/kinetic-samples/v_CricketShot_g04_c01_flow.npy',
help='Path to kinetics flow numpy sample')
parser.add_argument(
'--classes_path',
type=str,
default='data/kinetic-samples/label_map.txt',
help='Number of video_frames to use (should be a multiple of 8)')
parser.add_argument(
'--top_k',
type=int,
default='5',
help='When display_samples, number of top classes to display')
args = parser.parse_args()
run_demo(args)