-
Notifications
You must be signed in to change notification settings - Fork 0
/
numerical-radiation-homogeneous.tex
87 lines (80 loc) · 4.43 KB
/
numerical-radiation-homogeneous.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
\subsection{Homogeneous radiation background}
\label{sec.num.rad-homogeneous}
\enzo\ supports the use of a set of spatially uniform (but possibly
time-varying) radiation fields that can interface with the chemistry
and cooling/heating routines described in Section~\ref{sec.microphysics}. Many of these use
fits to the H, He and \Hep~ionizing and photo-ionization heating
rates that are of the form
\begin{equation}
\rm{rate} = k_0 (1+z)^{\alpha} \exp{\left( \frac{\beta (z-z_0)^2 }{1 + \gamma (z+z_1)^2} \right)}
\label{eq:homo_rad_template}
\end{equation}
where the constant coefficients $\alpha$, $\beta$, $\gamma$, $z_0$ and
$z_1$ are fits from the literature. For radiation field types 1-3
(numbered as they appear in the \enzo\ source code and simulation
parameter values), we
give the coefficients for the photoionization (and photo-heating)
rates of H, He, and \Hep~in Table~\ref{table:homo_coefs}. Radiation
background types 1
and 2 are based on \citet{1996ApJ...461...20H} with two different
intrinsic quasar spectra slopes, while Type 3 is from
\citet{2012ApJ...746..125H}, modified to match the normalized field
found in \citet{Kirkman05}.
The remainder of the radiation field types either build on the fits in Types
1-3 or use a completely different form and therefore we describe them
in the text rather than in Table~\ref{table:homo_coefs}.
Type 4 is the same as Type 3 but also
adds X-ray Compton heating from \citet{MadauEfstathiou99}, using
equations (4) and (11) of that paper.
Homogeneous radiation field types 5 and 6 start with a spectral shape
that is then integrated against the appropriate H, He, and \Hep,
cross-sections to compute the ionization and photo-ioniziation heating
rates (we use 400 bins logarithmically spaced from 0.74 eV to $7.24
\times 10^9$ eV). In particular, Type 5 has a hard, featureless
quasar-like power law spectrum $f_{\nu} = f_{\rm HI} \nu^{\alpha_0}$,
where $\alpha_0 = 1.5$ by default and the spectrum is normalized at
the HI ionization edge. Type 6 has the same spectrum, but attenuated
by a column density of $10^{22}$ cm$^{-3}$ neutral hydrogen.
Types 8, 9, and 14 have only a photo-dissociating Lyman-Werner flux,
with Type 8 being constant and Type 9 using the redshift-dependent
results of \citet{TrentiStiavelli09}. Type 14 uses a fit from
\citet{WiseAbel05} for the range $6 < z < 50$, constant for $z<6$, and
zero for $z > 50$. Other types are either undefined or currently unused.
\begin{table*}
\begin{center}
\caption{Homogeneous radiation field coefficients}
\begin{tabular*}{0.9\textwidth}{@{\extracolsep{\fill}}lrrrrrr}
\tableline\tableline
{Element} & {$k_0$} & {$\alpha$} & {$\beta$} & {$\gamma$} & {$z_0$} & {$z_1$} \\
\tableline
\multicolumn{7}{c}{Radiation Type 1 \citep{1996ApJ...461...20H} for the case $\alpha_q = 1.5$} \\
\tableline
H ionization & $6.7 \times 10^{-13}$ & 0.43 & 1/1.95 & 0 & 2.3 & 0 \\
He$^+$ ionization & $6.3 \times 10^{-15}$ & 0.51 & 1/2.35 & 0 & 2.3 & 0 \\
He ionization & $3.2 \times 10^{-13}$ & 0.50 & 1/2.00 & 0 & 2.3 & 0 \\
H heating & $4.7 \times 10^{-24}$ & 0.43 & 1/1.95 & 0 & 2.3 & 0 \\
He heating & $8.2 \times 10^{-24}$ & 0.50 & 1/2.00 & 0 & 2.3 & 0 \\
He$^+$ heating & $1.6 \times 10^{-25}$ & 0.51 & 1/2.35 & 0 & 2.3 & 0 \\
\tableline
\multicolumn{7}{c}{Radiation Type 2 \citep{1996ApJ...461...20H} for the case $\alpha_q = 1.8$} \\
\tableline
H ionization & $5.6 \times 10^{-13}$ & 0.43 & 1/1.95 & 0 & 2.3 & 0 \\
He$^+$ ionization & $3.2 \times 10^{-15}$ & 0.30 & 1/2.60 & 0 & 2.3 & 0 \\
He ionization & $4.8 \times 10^{-13}$ & 0.43 & 1/1.95 & 0 & 2.3 & 0 \\
H heating & $3.9 \times 10^{-24}$ & 0.43 & 1/1.95 & 0 & 2.3 & 0 \\
He heating & $6.4 \times 10^{-24}$ & 0.43 & 1/2.10 & 0 & 2.3 & 0 \\
He$^+$ heating & $8.7 \times 10^{-26}$ & 0.30 & 1/2.70 & 0 & 2.3 & 0 \\
\tableline
\multicolumn{7}{c}{Radiation Type 3 modified \citet{2012ApJ...746..125H}} \\
\tableline
H ionization & $1.04 \times 10^{-12}$ & 0.231 & -0.6818 & 0.1646 & 1.855 & 0.3097 \\
He$^+$ ionization & $1.84 \times 10^{-14}$ & -1.038 & -1.1640 & 0.1940 & 1.973 & -0.6561 \\
He ionization & $5.79 \times 10^{-13}$ & 0.278 & -0.8260 & 0.1730 & 1.973 & 0.2880 \\
H heating & $8.86 \times 10^{-25}$ & -0.0290 & -0.7055 & 0.1884 & 2.003 & 0.2888 \\
He heating & $5.86 \times 10^{-24}$ & 0.1764 & -0.8029 & 0.1732 & 2.088 & 0.1362 \\
He$^+$ heating & $2.17 \times 10^{-25}$ & -0.2196 & -1.070 & 0.2124 & 1.1782 & -0.9213 \\
\end{tabular*}
%\tablecomments{}
\label{table:homo_coefs}
\end{center}
\end{table*}