forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
136 lines (109 loc) · 4.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RNN model with embeddings"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class NamignizerModel(object):
"""The Namignizer model ~ strongly based on PTB"""
def __init__(self, is_training, config):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
size = config.hidden_size
# will always be 27
vocab_size = config.vocab_size
# placeholders for inputs
self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps])
self._targets = tf.placeholder(tf.int32, [batch_size, num_steps])
# weights for the loss function
self._weights = tf.placeholder(tf.float32, [batch_size * num_steps])
# lstm for our RNN cell (GRU supported too)
lstm_cells = []
for layer in range(config.num_layers):
lstm_cell = tf.contrib.rnn.BasicLSTMCell(size, forget_bias=0.0)
if is_training and config.keep_prob < 1:
lstm_cell = tf.contrib.rnn.DropoutWrapper(
lstm_cell, output_keep_prob=config.keep_prob)
lstm_cells.append(lstm_cell)
cell = tf.contrib.rnn.MultiRNNCell(lstm_cells)
self._initial_state = cell.zero_state(batch_size, tf.float32)
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [vocab_size, size])
inputs = tf.nn.embedding_lookup(embedding, self._input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
outputs = []
state = self._initial_state
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0:
tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, size])
softmax_w = tf.get_variable("softmax_w", [size, vocab_size])
softmax_b = tf.get_variable("softmax_b", [vocab_size])
logits = tf.matmul(output, softmax_w) + softmax_b
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[logits],
[tf.reshape(self._targets, [-1])],
[self._weights])
self._loss = loss
self._cost = cost = tf.reduce_sum(loss) / batch_size
self._final_state = state
# probabilities of each letter
self._activations = tf.nn.softmax(logits)
# ability to save the model
self.saver = tf.train.Saver(tf.global_variables())
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self.lr)
self._train_op = optimizer.apply_gradients(zip(grads, tvars))
def assign_lr(self, session, lr_value):
session.run(tf.assign(self.lr, lr_value))
@property
def input_data(self):
return self._input_data
@property
def targets(self):
return self._targets
@property
def activations(self):
return self._activations
@property
def weights(self):
return self._weights
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def loss(self):
return self._loss
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op