-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
901 lines (833 loc) · 39.7 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
#load libraries
import matplotlib
import os
import itertools
import numpy as np
import pandas as pd
import scanpy as sc
import seaborn as sns
import math
import warnings
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import cm, gridspec
from matplotlib.patches import Patch
from matplotlib.lines import Line2D
mpl.rc('figure', max_open_warning = 0)
import sklearn
from sklearn.preprocessing import minmax_scale, scale, FunctionTransformer
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import lifelines
from lifelines import KaplanMeierFitter, CoxPHFitter
from lifelines.statistics import multivariate_logrank_test
from lifelines import exceptions
warnings.filterwarnings("ignore",category = exceptions.ApproximationWarning)
import scipy
from scipy import stats
from scipy.stats import entropy, norm
from scipy.spatial import cKDTree
import statsmodels
from statsmodels.formula.api import ols
from statsmodels.stats.multicomp import pairwise_tukeyhsd
import statsmodels.api as sm
import anndata
from anndata import AnnData
from sklearn.cluster import AgglomerativeClustering
codedir = os.getcwd()
mpl.rcParams['pdf.fonttype'] = 42
mpl.rcParams['ps.fonttype'] = 42
#functions
def km_cph_all(df_both,df_clin,s_title1,s_title2,s_marker,alpha=0.05,s_time='Survival_time', s_censor='Survival',
s_groups='abundance',s_cph_model='high',ls_clin=['age','tumor_size','Stage']):
'''
df_both must have s_time, s_censor, s_groups
s_marker: rename anudance_high into somthing more meaningful for CPH plots
df_clin: clinical covariates data frame
ls_clin = clinical covariates columns
'''
### log rank ###
if len(df_both) > 0:
results = multivariate_logrank_test(event_durations=df_both.loc[:,s_time],
groups=df_both.loc[:,s_groups], event_observed=df_both.loc[:,s_censor])
pvalue_km = results.summary.p[0]
else:
pvalue_km = 1
#kaplan meier plotting
if pvalue_km < alpha:
kmf = KaplanMeierFitter()
fig1, ax = plt.subplots(figsize=(3,3),dpi=300)
for s_group in sorted(df_both.loc[:,s_groups].unique()):
df_abun = df_both[df_both.loc[:,s_groups]==s_group]
durations = df_abun.loc[:,s_time]
event_observed = df_abun.loc[:,s_censor]
kmf.fit(durations, event_observed,label=s_group) #try:#except:#results.summary.p[0] = 1
kmf.plot(ax=ax,ci_show=False,show_censors=True)
ax.set_title(f'{s_title1}\n{s_title2}\n p={pvalue_km:.2} n={len(df_both)}')
ax.legend(loc='upper right',title=f'{s_groups}',frameon=False)
ax.set_xlabel(s_time)
plt.tight_layout()
else:
fig1 = None
##### CPH ######
cph = CoxPHFitter(penalizer=0.1)
try:
df_dummy = pd.get_dummies(df_both).loc[:,[s_time,s_censor,f'{s_groups}_{s_cph_model}']]
df_dummy = df_dummy.rename({f'{s_groups}_{s_cph_model}':s_marker},axis=1)
df_dummy.index = df_dummy.index.astype('str')
df_marker = df_dummy.merge(df_clin,left_index=True,right_index=True).loc[:,[s_time,s_censor,s_marker] + ls_clin]
df_marker = df_marker.dropna()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
#multi
cph.fit(df_marker, s_time, event_col=s_censor)
pvalue = cph.summary.loc[s_marker,'p']
except:
pvalue = 1
if pvalue < alpha:
fig2, ax = plt.subplots(figsize=(3.2,2),dpi=200)
cph.plot(ax=ax)
ax.set_title(f'{s_title1}\n{s_title2}\n{s_censor} p={pvalue:.2} n={len(df_marker)}')
plt.tight_layout()
else:
fig2 = None
return(fig1, fig2)
def plt_sig2(df_test,ax):
#ls_order = df_test.group1.append(df_test.group2).unique()
ls_order = pd.concat([df_test.group1,df_test.group2]).unique()
props = {'connectionstyle':matplotlib.patches.ConnectionStyle.Bar(armA=0.0, armB=0.0, fraction=0.0, angle=None),
'arrowstyle':'-','linewidth':.5}
#draw on axes
y_lim = ax.get_ylim()[1]
y_lim_min = ax.get_ylim()[0]
y_diff = (y_lim-y_lim_min)/10
for count, s_index in enumerate(df_test[df_test.reject].index):
y_test = (y_diff+count*y_diff)
text =f"p = {df_test.loc[s_index,'p-adj']:.1}"
one = df_test.loc[s_index,'group1']
two = df_test.loc[s_index,'group2']
x_one = np.argwhere(ls_order == one)[0][0]
x_two = np.argwhere(ls_order == two)[0][0]
ax.annotate(text, xy=(np.mean([x_one,x_two]),y_lim - y_test),fontsize=6)
ax.annotate('', xy=(x_one,y_lim - y_test), xytext=(x_two,y_lim - y_test), arrowprops=props)
#break
return(ax)
def more_plots(adata,df_p,s_subtype,s_type,s_partition,s_cell,n_neighbors,resolution,ls_col,z_score,linkage,
s_color_p='Platform',d_color_p = {'cycIF':'gold','IMC':'darkblue'},savedir=f'{codedir}/20220222/Survival_Plots_Both'):
#more plots
#color by platform/leiden
from matplotlib.pyplot import gcf
d_color = dict(zip(sorted(adata.obs.leiden.unique()),sns.color_palette()[0:len(adata.obs.leiden.unique())]))
network_colors = df_p.leiden.astype('str').map(d_color)#
network_colors.name = 'cluster'
node_colors = df_p.loc[:,s_color_p].astype('str').map(d_color_p)
network_node_colors = pd.DataFrame(node_colors).join(pd.DataFrame(network_colors))
g = sns.clustermap(df_p.loc[:,ls_col].dropna(),figsize=(7,6),cmap='viridis',
row_colors=network_node_colors,method=linkage,dendrogram_ratio=0.16)
for label,color in d_color_p.items():
g.ax_col_dendrogram.bar(0, 0, color=color,label=label, linewidth=0)
l1 = g.ax_col_dendrogram.legend(loc="right", ncol=1,bbox_to_anchor=(-0.1, 0.72),bbox_transform=gcf().transFigure)
for label,color in d_color.items():
g.ax_row_dendrogram.bar(0, 0, color=color,label=label, linewidth=0)
l2 = g.ax_row_dendrogram.legend(loc="right", ncol=1,bbox_to_anchor=(-0.1, 0.5),bbox_transform=gcf().transFigure)
g.savefig(f'{savedir}/clustermap_PlatformandSubtype_{s_type}_{s_partition}_{s_cell}_{s_type}_{n_neighbors}_{resolution}.pdf',dpi=200)
#subtypes' mean
d_replace = {}
df_plot = df_p.loc[:,ls_col.tolist()+['leiden']].dropna().groupby('leiden').mean()
df_plot.index.name = f'leiden {resolution}'
g = sns.clustermap(df_plot.dropna().T,z_score=z_score,figsize=(4,len(ls_col)*.25+1),cmap='viridis',vmin=-2,vmax=2,method='ward')
g.fig.suptitle(f'leiden {resolution}',x=.9)
g.savefig(f'{savedir}/clustermap_subtypes_{s_type}_{s_partition}_{s_cell}_{s_type}_{n_neighbors}_{resolution}.pdf',dpi=200)
marker_genes = df_plot.dropna().T.iloc[:,g.dendrogram_col.reordered_ind].columns.tolist()
categories_order = df_plot.dropna().T.iloc[g.dendrogram_row.reordered_ind,:].index.tolist()
#barplot
fig,ax=plt.subplots(figsize=(2.5,2.5),dpi=200)
df_p.groupby(['leiden','Platform','Subtype']).count().iloc[:,0].unstack().loc[marker_genes].plot(kind='barh',title='Patient Count',ax=ax)
ax.legend(bbox_to_anchor=(1,1),frameon=False)
plt.tight_layout()
fig.savefig(f'{savedir}/barplot_subtyping_{s_type}_{s_partition}_{s_cell}_{s_type}_{n_neighbors}_{resolution}.pdf')
## find best cutpoint
def low_high_abun(df_all,s_subtype,s_plat,s_col,cutp=0.5):
df_all.index = df_all.index.astype('str')
df = df_all[(df_all.Platform==s_plat) & (df_all.subtype==s_subtype)].copy()
if len(df) > 0:
#KM
i_cut = np.quantile(df.loc[:,s_col],cutp)
b_low = df.loc[:,s_col] <= i_cut
if i_cut == 0:
b_low = df.loc[:,s_col] <= 0
df.loc[b_low,'abundance'] = 'low'
df.loc[~b_low,'abundance'] = 'high'
return(df)
def km_plot_cat(df,s_col,s_time,s_censor,fontsize='medium',loc='upper center',alpha=0.08,figsize=(3,3),x=0.7):
results = multivariate_logrank_test(event_durations=df.loc[:,s_time],
groups=df.loc[:,s_col], event_observed=df.loc[:,s_censor])
kmf = KaplanMeierFitter()
fig, ax = plt.subplots(figsize=figsize,dpi=400)
ls_order = sorted(df.loc[:,s_col].dropna().unique())
#print(ls_order)
for s_group in ls_order:
#print(s_group)
df_abun = df[df.loc[:,s_col]==s_group]
durations = df_abun.loc[:,s_time]
event_observed = df_abun.loc[:,s_censor]
kmf.fit(durations,event_observed,label=s_group)
kmf.plot(ax=ax,ci_show=True,show_censors=True,ci_alpha=alpha,censor_styles={"marker": "|"})
print(f'{s_col} {s_group} Median = {kmf.median_survival_time_}')
if len(ls_order)==2:
pvalue = f"{results.summary.p[0]:.2}"
demo_con_style(ax,x,0.93,0.78,0.9, f"P={pvalue}")
ax.set_title(f'{s_col.replace("_"," ")}')
else:
ax.set_title(f'{s_col.replace("_"," ")}\nP={results.summary.p[0]:.2}')
ls_n = [df.loc[:,s_col].value_counts()[item] for item in ls_order]
print(ls_n)
h,l = ax.get_legend_handles_labels()
print(l)
labels = [f'{item}\n(N={ls_n[idx]})' for idx, item in enumerate(l)]
ax.legend(labels=labels,handles=h,fancybox=False,frameon=False,loc=loc,fontsize=fontsize)
ax.set_ylim(-0.05,1.05)
# Hide the right and top spines
ax.spines[['right', 'top']].set_visible(False)
ax.set_ylabel(f'Probability of {s_censor}')
ax.set_xlabel(f'{s_time.replace("Survival_time","Overall Survival").replace("Recurrence_time","Recurrence-Free Survival")} (days)')
return(fig,ax,ls_order)
def demo_con_style(ax,x,top, bottom,ytext,pvalue):
connectionstyle = "bar,fraction=0.2"
x1 = x #x1, y1 = 0.8, 0.9
x2 = x #x2, y2 = 0.8, 0.8
y1 = top
y2 = bottom
#ax.plot([x1, x2], [y1, y2], ".",color='white')
ax.annotate("",#pvalue,#
xy=(x1, y1), xycoords=ax.transAxes,#'data',
xytext=(x2, y2), textcoords=ax.transAxes,#'data',
arrowprops=dict(arrowstyle="-", color="k",
#shrinkA=5, shrinkB=5,
patchA=None, patchB=None,
connectionstyle=connectionstyle,
),
)
ax.text(x+0.06, ytext, pvalue,transform=ax.transAxes,
ha="left", va="top",fontsize='medium')
#fuction to plot km curve for categorical variable
def cat_km(df,s_col,s_time,s_censor,figsize=(4,3)):
df_lr = pd.DataFrame()
kmf = KaplanMeierFitter()
fig, ax = plt.subplots(figsize=figsize,dpi=300)
for s_group in sorted(df.loc[:,s_col].unique()):
df_abun = df.loc[df.loc[:,s_col]==s_group,[s_col,s_time,s_censor]].dropna()
#print(len(df_abun))
durations = df_abun.loc[:,s_time]
event_observed = df_abun.loc[:,s_censor]
try:
kmf.fit(durations, event_observed,label=s_group)
kmf.plot(ax=ax,ci_show=False,show_censors=True,label=s_group)
except:
print('')
df_lr = pd.concat([df_lr,df_abun])
try:
results = multivariate_logrank_test(event_durations=df_lr.loc[:,s_time],
groups=df_lr.loc[:,s_col], event_observed=df_lr.loc[:,s_censor])
pvalue = results.summary.p[0]
except:
pvalue = 1.0
ax.set_title(f'{s_col}\np={pvalue:.2} n={len(df.loc[:,[s_col,s_time,s_censor]].dropna())}',fontsize=10)
ax.set_xlabel(s_censor)
ax.legend(bbox_to_anchor=(1.01,0.6),title=f'{s_col}')
plt.tight_layout()
return(fig,ax)
def clinical_cph(df_p,s_marker,s_time,s_censor,alpha=1,ls_clin=['age','tumor_size','Stage'],figsize=(3.2,2)):
'''
s_marker: categorical
ls_clin = list of floats
'''
cph = CoxPHFitter(penalizer=0.1)
#try:
df_dummy = pd.get_dummies(df_p.loc[:,[s_time,s_censor,s_marker]],drop_first=True)
df_dummy = df_dummy.rename({f'{df_dummy.columns[-1]}':s_marker},axis=1)
df_dummy.index = df_dummy.index.astype('str')
df_marker = df_dummy.merge(df_p.loc[:,ls_clin],left_index=True,right_index=True).loc[:,[s_time,s_censor,s_marker] + ls_clin]
df_marker = df_marker.dropna()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
#multi
cph.fit(df_marker, s_time, event_col=s_censor)
pvalue = cph.summary.loc[s_marker,'p']
print(pvalue)
fig2, ax = plt.subplots(figsize=figsize,dpi=200)
cph.plot(ax=ax)
return(fig2,ax,cph,df_marker)
def single_cph(df_p,s_time,s_censor,alpha=1):
s_groups = 'abundance'
s_cph_model = 'high'
ls_clin=['age','tumor_size','Stage']
cph = CoxPHFitter(penalizer=0.1)
try:
df_dummy = pd.get_dummies(df_p).loc[:,[s_time,s_censor,f'{s_groups}_{s_cph_model}']]
df_dummy = df_dummy.rename({f'{s_groups}_{s_cph_model}':s_marker},axis=1)
df_dummy.index = df_dummy.index.astype('str')
df_marker = df_dummy.merge(df_clin,left_index=True,right_index=True).loc[:,[s_time,s_censor,s_marker] + ls_clin]
df_marker = df_marker.dropna()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
#multi
cph.fit(df_marker, s_time, event_col=s_censor)
pvalue = cph.summary.loc[s_marker,'p']
print(pvalue)
except:
pvalue = 1
if pvalue < alpha:
fig2, ax = plt.subplots(figsize=(3.2,2),dpi=200)
cph.plot(ax=ax)
ax.set_title(f'{s_title1}\n{s_title2}\n{s_censor} p={pvalue:.2} n={len(df_marker)}')
plt.tight_layout()
def single_km(df_all,s_cell,s_subtype,s_plat,s_col,savedir,alpha=0.05,cutp=0.5,s_time='Survival_time',
s_censor='Survival',s_propo='in'):
df_all.index = df_all.index.astype('str')
df = df_all[(df_all.Platform==s_plat) & (df_all.subtype==s_subtype)].copy()
df = df.loc[:,[s_col,s_time,s_censor]].dropna()
if len(df) > 0:
#KM
i_cut = np.quantile(df.loc[:,s_col],cutp)
b_low = df.loc[:,s_col] <= i_cut
s_title1 = f'{s_subtype} {s_plat}'
s_title2 = f'{s_col} {s_propo} {s_cell}'
if i_cut == 0:
b_low = df.loc[:,s_col] <= 0
df.loc[b_low,'abundance'] = 'low'
df.loc[~b_low,'abundance'] = 'high'
#log rank
results = multivariate_logrank_test(event_durations=df.loc[:,s_time],
groups=df.abundance, event_observed=df.loc[:,s_censor])
#kaplan meier plotting
if results.summary.p[0] < alpha:
kmf = KaplanMeierFitter()
fig, ax = plt.subplots(figsize=(3,3),dpi=300)
for s_group in ['high','low']:
df_abun = df[df.abundance==s_group]
durations = df_abun.loc[:,s_time]
event_observed = df_abun.loc[:,s_censor]
try:
kmf.fit(durations, event_observed,label=s_group)
kmf.plot(ax=ax,ci_show=False,show_censors=True)
except:
results.summary.p[0] = 1
ax.set_title(f'{s_title1}\n{s_title2}\nn={len(df)} p={results.summary.p[0]:.2}',fontsize=10)
ax.set_xlabel(s_censor)
ax.legend(loc='upper right',title=f'{cutp}({i_cut:.2})',frameon=False)
plt.tight_layout()
fig.savefig(f"{savedir}/Survival_Plots/KM_{s_title1.replace('','_')}_{s_title2.replace('','_')}_{cutp}_{s_censor}.pdf",dpi=300)
return(df)
def km_pvalue(df,s_col,s_time,s_censor,cutp=0.5):
i_cut = np.quantile(df.loc[:,s_col],cutp)
b_low = df.loc[:,s_col] <= i_cut
if i_cut == 0:
b_low = df.loc[:,s_col] <= 0
df.loc[b_low,'abundance'] = 'low'
df.loc[~b_low,'abundance'] = 'high'
#log rank
results = multivariate_logrank_test(event_durations=df.loc[:,s_time],
groups=df.abundance, event_observed=df.loc[:,s_censor])
pvalue = results.summary.p[0]
d_result = {}
for s_group in ['high','low']:
kmf = KaplanMeierFitter()
df_abun = df[df.abundance==s_group]
durations = df_abun.loc[:,s_time]
event_observed = df_abun.loc[:,s_censor]
try:
kmf.fit(durations, event_observed,label=s_group)
d_result.update({s_group:kmf.median_survival_time_})
except:
d_result.update({s_group:np.nan})
if d_result['high']!=d_result['low']:
results = d_result['high']-d_result['low']
else:
results = np.nan
return(pvalue, results)
def df_from_mcomp(m_comp):
df_test = pd.DataFrame.from_records(m_comp.summary().data,coerce_float=True)
df_test.columns=df_test.loc[0].astype('str')
df_test.drop(0,inplace=True)
df_test =df_test.apply(pd.to_numeric, errors='ignore')
ls_order = pd.concat([df_test.group1,df_test.group2]).unique()
return(df_test, ls_order)
def plt_sig(df_test,ax,ax_factor=5):
ls_order = pd.concat([df_test.group1,df_test.group2]).unique()
props = {'connectionstyle':matplotlib.patches.ConnectionStyle.Bar(armA=0.0, armB=0.0, fraction=0.0, angle=None),
'arrowstyle':'-','linewidth':.5}
#draw on axes
y_lim = ax.get_ylim()[1]
y_lim_min = ax.get_ylim()[0]
y_diff = y_lim-y_lim_min
for count, s_index in enumerate(df_test[df_test.reject].index):
text =f"p = {df_test.loc[s_index,'p-adj']:.1}"
#text = "*"
one = df_test.loc[s_index,'group1']
two = df_test.loc[s_index,'group2']
x_one = np.argwhere(ls_order == one)[0][0]
x_two = np.argwhere(ls_order == two)[0][0]
ax.annotate(text, xy=(np.mean([x_one,x_two]),y_lim - (y_diff+count)/ax_factor),fontsize=6)
ax.annotate('', xy=(x_one,y_lim - (y_diff+count)/ax_factor), xytext=(x_two,y_lim - (y_diff+count)/ax_factor), arrowprops=props)
#break
return(ax)
def post_hoc(confusion_matrix):
chi2, pvalue, dof, expected = stats.chi2_contingency(confusion_matrix)
observed_vals = confusion_matrix
expected_vals = pd.DataFrame(expected,index=confusion_matrix.index,columns=confusion_matrix.columns)
result_val = pd.DataFrame(data='',index=confusion_matrix.index,columns=confusion_matrix.columns)
col_sum = observed_vals.sum(axis=1)
row_sum = observed_vals.sum(axis=0)
for indx in confusion_matrix.index:
for cols in confusion_matrix.columns:
observed = float(observed_vals.loc[indx,cols])
expected = float(expected_vals.loc[indx,cols])
col_total = float(col_sum[indx])
row_total = float(row_sum[cols])
expected_row_prop = expected/row_total
expected_col_prop = expected/col_total
std_resid = (observed - expected) / (math.sqrt(expected * (1-expected_row_prop) * (1-expected_col_prop)))
p_val = norm.sf(abs(std_resid))
if p_val < 0.05/(len(confusion_matrix.index)*len(confusion_matrix.columns)):
print(indx,cols, "***", p_val)
result_val.loc[indx,cols] = '***'
elif p_val < 0.05:
print (indx,cols, '*', p_val)
result_val.loc[indx,cols] = '*'
else:
print (indx,cols, 'not sig', p_val)
print('cutoff')
print(0.05/(len(confusion_matrix.index)*len(confusion_matrix.columns)))
return(result_val)
def single_var_km_cph(df_all,df_surv,s_subtype,s_platform,s_cell,alpha=0.05,min_cutoff=0.003,savedir=f"figures"):
df_all.index = df_all.index.astype('str')
df_surv.index = df_surv.index.astype('str')
df_all = df_all.merge(df_surv.loc[:,['Survival','Survival_time','subtype','Platform']],left_index=True,right_index=True)
if s_platform == 'IMC':
df = df_all[(df_all.Platform==s_platform) & (~df_all.index.str.contains('Z')) & (df_all.subtype==s_subtype)].copy()
elif s_platform == 'cycIF':
df = df_all[(df_all.Platform==s_platform) & (~df_all.index.str.contains('JP-TMA2')) & (df_all.subtype==s_subtype)].copy()
else:
df = df_all[(df_all.Platform==s_platform) & (df_all.subtype==s_subtype)].copy()
df = df.dropna() #df.dropna(axis=1).dropna()
#KM
for s_col in df.columns.drop(['Survival','Survival_time','subtype','Platform']):
b_low = df.loc[:,s_col] <= df.loc[:,s_col].median()
s_title1 = f'{s_subtype} {s_platform}'
s_title2 = f'{s_cell} {s_col.replace(".","")}'
if df.loc[:,s_col].median() < min_cutoff:
continue
elif len(df) < 1:
continue
df.loc[b_low,'abundance'] = 'low'
df.loc[~b_low,'abundance'] = 'high'
#log rank
results = multivariate_logrank_test(event_durations=df.Survival_time,
groups=df.abundance, event_observed=df.Survival)
if results.summary.p[0] < alpha:
print(s_col)
#kaplan meier plotting
kmf = KaplanMeierFitter()
fig, ax = plt.subplots(figsize=(3,3),dpi=300)
for s_group in ['high','low']:
df_abun = df[df.abundance==s_group]
durations = df_abun.Survival_time
event_observed = df_abun.Survival
try:
kmf.fit(durations, event_observed,label=s_group)
kmf.plot(ax=ax,ci_show=False,show_censors=True)
except:
print('.')
ax.set_title(f'{s_title1}\n{s_title2}\np={results.summary.p[0]:.2} (n={len(df)})',fontsize=10)
ax.legend(loc='upper right',title=f'{df.loc[:,s_col].median():.2}',frameon=False)
plt.tight_layout()
fig.savefig(f"{savedir}/KM_{s_title1.replace(' ','_')}_{s_title2.replace(' ','_')}.pdf",dpi=300)
#CPH
cph2 = CoxPHFitter(penalizer=0.1)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
try:
cph2.fit(df.loc[:,[s_col,'Survival_time','Survival']], duration_col='Survival_time', event_col='Survival')
if cph2.summary.p[0] < alpha:
print(s_col)
fig, ax = plt.subplots(figsize=(2.5,2),dpi=300)
cph2.plot(ax=ax)
ax.set_title(f'{s_title1} (n={len(df)})\n{s_title2}\np={cph2.summary.p[0]:.2} ({df.loc[:,s_col].median():.2})',fontsize=10)
ax.set_ylabel(f'{s_col}')
ax.set_yticklabels([])
plt.tight_layout()
fig.savefig(f"{savedir}/CPH_{s_title1.replace(' ','_')}_{s_title2.replace(' ','_')}.pdf",dpi=300)
except:
print(f'skipped {s_col}')
return(df)
def make_adata(df, ls_col,df_surv, n_neighbors, s_subtype, s_type, s_partition, s_cell,ncols=4):
print('making adata')
X = df.loc[:,ls_col].fillna(0)
adata = sc.AnnData(X,dtype=X.values.dtype)
adata.raw = adata
#reduce dimensionality
sc.tl.pca(adata, svd_solver='auto')
print('scaling')
sc.pp.scale(adata, zero_center=False, max_value=20)
print('calc umap')
# calculate neighbors
sc.pp.neighbors(adata, n_neighbors=n_neighbors)
sc.tl.umap(adata)
#color by markers
figname = f"Umapboth_markers_{s_subtype}_{s_type}_{s_partition}_{s_cell}_{n_neighbors}neigh.pdf"
title=figname.split('.pdf')[0].replace('_',' ')
sc.pl.umap(adata, color=ls_col,vmin='p1.5',vmax='p99.5',ncols=ncols,save=figname,size=250)
#platform
adata.obs['Platform'] = adata.obs.index.astype('str').map(dict(zip(df_surv.index.astype('str'),df_surv.Platform)))
figname = f"Umapboth_Platform_{s_subtype}_{s_type}_{s_partition}_{s_cell}_{n_neighbors}neigh.pdf"
title=figname.split('.pdf')[0].replace('_',' ')
sc.pl.umap(adata, color='Platform',save=figname,size=250)
#subtype
adata.obs['subtype'] = adata.obs.index.astype('str').map(dict(zip(df_surv.index.astype('str'),df_surv.subtype)))
#CAREFUL
adata.obs['subtype'] = adata.obs['subtype'].fillna('TNBC')
figname = f"Umapboth_subtype_{s_subtype}_{s_type}_{s_partition}_{s_cell}_{n_neighbors}neigh.pdf"
title=figname.split('.pdf')[0].replace('_',' ')
sc.pl.umap(adata, color='subtype',save=figname,size=250)
return(adata)
def cluster_leiden(adata, resolution,n_neighbors, s_subtype, s_type, s_partition, s_cell):
sc.tl.leiden(adata,resolution=resolution)
fig,ax = plt.subplots(figsize=(2.5,2),dpi=200)
figname=f'both_{s_subtype}_{s_partition}_{s_cell}_{n_neighbors}_{resolution}.pdf'
sc.pl.umap(adata, color='leiden',ax=ax,title=figname.split('.pdf')[0].replace('_',' '),wspace=.25,save=figname,size=40)
return(adata)
def km_cph(adata,df_surv,s_subtype,s_plat,s_type,s_partition,s_cell,resolution,n_neighbors,savedir=f'{codedir}/20220222/Survival_Plots_Both'):
if type(adata) == anndata._core.anndata.AnnData:
df_p = pd.DataFrame(data=adata.raw.X, index=adata.obs.index, columns=adata.var.index) #adata.to_df()
df_p['Subtype'] = adata.obs.subtype
df_p['leiden'] = adata.obs.leiden
df_p['Platform'] = adata.obs.Platform
else:
df_p = adata
df_p.index = df_p.index.astype('str')
df_p['Survival'] = df_p.index.map(dict(zip(df_surv.index,df_surv.Survival)))
df_p['Survival_time'] = df_p.index.map(dict(zip(df_surv.index,df_surv.Survival_time)))
df_st = df_p[(df_p.Subtype==s_subtype)].dropna()
if s_plat != 'Both':
df_st = df_p[(df_p.Platform==s_plat) & (df_p.Subtype==s_subtype)].dropna()
if not len(df_st) < 1:
print(len(df_st))
T = df_st['Survival_time'] ## time to event
E = df_st['Survival'] ## event occurred or censored
groups = df_st.loc[:,'leiden']
kmf1 = KaplanMeierFitter() ## instantiate the class to create an object
fig, ax = plt.subplots(figsize=(3,3),dpi=200)
for idx, s_group in enumerate(sorted(df_p.leiden.unique())):
i1 = (groups == s_group)
if sum(i1) > 0:
kmf1.fit(T[i1], E[i1], label=s_group) ## fit thedata
kmf1.plot(ax=ax,ci_show=False,color=f'C{idx}',show_censors=True)
print(f'{s_group}: {kmf1.median_survival_time_}, {kmf1.percentile(.75)} ({i1.sum()})')
results = multivariate_logrank_test(event_durations=T, groups=groups, event_observed=E)
ax.set_title(f'{s_subtype} {s_plat} {s_cell} \nk={resolution} p={results.summary.p[0]:.1} n={len(df_st)}')
ax.legend(frameon=False,bbox_to_anchor=(1,1))#loc='upper right',
ax.set_ylim(-0.05,1.05)
plt.tight_layout()
fig.savefig(f'{savedir}/KM_{s_subtype}_{s_plat}_{s_type}_{s_partition}_{s_cell}_{n_neighbors}_{resolution}.pdf',dpi=300) #KM_ER+_Both_LeidenClustering_leidencelltype2_epithelial_6_0.2
#CPH
try:
df_dummy = pd.get_dummies(df_st.loc[:,['Survival_time','Survival','leiden']])
df_dummy = df_dummy.loc[:,df_dummy.sum() != 0]
cph = CoxPHFitter(penalizer=0.1) ## Instantiate the class to create a cph object
cph.fit(df_dummy, 'Survival_time', event_col='Survival')
fig, ax = plt.subplots(figsize=(2.5,3),dpi=200)
cph.plot(ax=ax)
pvalue = cph.summary.loc[:,'p'].min()
ax.set_title(f'CPH: {s_subtype} {s_plat} {s_cell}\np={pvalue:.2}')
plt.tight_layout()
fig.savefig(f'{savedir}/CoxPH_{s_subtype}_{s_plat}_{s_type}_{s_partition}_{s_cell}_{n_neighbors}_{resolution}.pdf',dpi=300)
except:
cph = 'zero'
print(f'skipped CPH')
else:
cph = 'zero'
return(df_p, cph)
def km_cph_entropy(df_p,df,ls_col,s_subtype,s_plat,s_cell,savedir=f'{codedir}/20220222/Survival_Plots_Both'):
df_p['entropy'] = entropy(df_p.loc[:,ls_col].fillna(0),axis=1,base=2)
df_st = df_p[(df_p.Subtype==s_subtype)].dropna()
if s_plat != 'Both':
df_st = df_p[(df_p.Platform==s_plat) & (df_p.Subtype==s_subtype)].dropna()
#######3 Entropy
s_col = 'entropy'
# no df and ls_col variable
df_st = df.loc[:,ls_col].merge(df_st.loc[:,['Subtype','Platform','Survival','Survival_time','entropy']],left_index=True,right_index=True)
if not len(df_st) < 1:
b_low = df_st.loc[:,s_col] <= df_st.loc[:,s_col].median()
if df_st.loc[:,s_col].median() == 0:
b_low = df.loc[:,s_col] <= 0
df_st.loc[b_low,'abundance'] = 'low'
df_st.loc[~b_low,'abundance'] = 'high'
kmf = KaplanMeierFitter()
results = multivariate_logrank_test(event_durations=df_st.Survival_time, groups=df_st.abundance, event_observed=df_st.Survival)
print(f'entropy {results.summary.p[0]}')
if results.summary.p[0] < 0.2:
fig, ax = plt.subplots(figsize=(3,3),dpi=200)
for s_group in ['high','low']:
df_abun = df_st[df_st.abundance==s_group]
durations = df_abun.Survival_time
event_observed = df_abun.Survival
kmf.fit(durations, event_observed,label=s_group)
kmf.plot(ax=ax,ci_show=False,show_censors=True)
s_title1 = f'{s_subtype} {s_plat}'
s_title2 = f'{s_cell} {s_col}'
ax.set_title(f'{s_title1}\n{s_title2}\np={results.summary.p[0]:.2}',fontsize=10)
ax.legend(loc='upper right',frameon=False)
plt.tight_layout()
fig.savefig(f"{savedir}/KM_{s_title1.replace(' ','_')}_{s_title2.replace(' ','_')}.pdf",dpi=300)
cph = CoxPHFitter(penalizer=0.1)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
try:
cph.fit(df_st.loc[:,[s_col,'Survival','Survival_time']], duration_col='Survival_time', event_col='Survival')
if cph.summary.p[0] < 0.1:
print(s_col)
fig, ax = plt.subplots(figsize=(2.5,2),dpi=200)
cph.plot(ax=ax)
s_title1 = f'{s_subtype} {s_plat}'
s_title2 = f'{s_cell} {s_col}'
ax.set_title(f'{s_title1}\n{s_title2}\np={cph.summary.p[0]:.2}',fontsize=10)
plt.tight_layout()
fig.savefig(f"{savedir}/CPH_{s_title1.replace(' ','_')}_{s_title2.replace(' ','_')}.pdf",dpi=300)
except:
print(f'skipped {s_col}')
def group_median_diff(df_marker,s_group,s_marker):
lls_result = []
for s_test in df_marker.loc[:,s_group].dropna().unique():
ls_result = df_marker.loc[df_marker.loc[:,s_group] == s_test,s_marker].values
lls_result.append(ls_result)
if len(lls_result)==2:
try:
statistic, pvalue = stats.mannwhitneyu(lls_result[0],lls_result[1])
except:
print('error in group median diff mannwhitney')
pvalue = 1
statistic = None
elif len(lls_result) > 2:
try:
statistic, pvalue = stats.kruskal(*lls_result,nan_policy='omit')
except:
print('error in group median diff kruskal')
pvalue = 1
statistic = None
else:
#print('no groups found')
pvalue = None
statistic = None
#print(pvalue)
return(statistic,pvalue)
#functions
def silheatmap(adata,clust,marker_list,sil_key):
cluster_list = [str(item) for item in adata.uns[f'dendrogram_{clust}']['categories_ordered']]
#dataframe
df = adata.to_df()
df[clust] = adata.obs[clust]
#sort by sil
df[sil_key] = adata.obs[sil_key]
df = df.sort_values(by=sil_key)
#sort by cluster, markers
df['old_index'] = df.index
obs_tidy = df.set_index(clust)
obs_tidy.index = obs_tidy.index.astype('str')
obs_tidy = obs_tidy.loc[cluster_list,:]
df = df.loc[obs_tidy.old_index]
obs_tidy = obs_tidy.loc[:,marker_list]
#scale
obs_tidy = pd.DataFrame(data=minmax_scale(obs_tidy),index=obs_tidy.index,columns=obs_tidy.columns)
# define a layout of 3 rows x 3 columns
# The first row is for the dendrogram (if not dendrogram height is zero)
# second row is for main content. This col is divided into three axes:
# first ax is for the heatmap
# second ax is for 'brackets' if any (othwerise width is zero)
# third ax is for colorbar
colorbar_width = 0.2
var_names = marker_list
width = 10
dendro_height = 0.8 #if dendrogram else 0
groupby_height = 0.13 #if categorical else 0
heatmap_height = len(var_names) * 0.18 + 1.5
height = heatmap_height + dendro_height + groupby_height + groupby_height
height_ratios = [dendro_height, heatmap_height, groupby_height,groupby_height]
width_ratios = [width, 0, colorbar_width, colorbar_width]
fig = plt.figure(figsize=(width, height),dpi=200)
axs = gridspec.GridSpec(
nrows=4,
ncols=4,
wspace=1 / width,
hspace=0.3 / height,
width_ratios=width_ratios,
height_ratios=height_ratios,
)
norm = mpl.colors.Normalize(vmin=0, vmax=1, clip=False)
norm2 = mpl.colors.Normalize(vmin=-1, vmax=1, clip=False)
# plot heatmap
heatmap_ax = fig.add_subplot(axs[1, 0])
im = heatmap_ax.imshow(obs_tidy.T.values, aspect='auto',norm=norm,interpolation='nearest') # ,interpolation='nearest'
heatmap_ax.set_xlim(0 - 0.5, obs_tidy.shape[0] - 0.5)
heatmap_ax.set_ylim(obs_tidy.shape[1] - 0.5, -0.5)
heatmap_ax.tick_params(axis='x', bottom=False, labelbottom=False)
heatmap_ax.set_xlabel('')
heatmap_ax.grid(False)
heatmap_ax.tick_params(axis='y', labelsize='small', length=1)
heatmap_ax.set_yticks(np.arange(len(var_names)))
heatmap_ax.set_yticklabels(var_names, rotation=0)
#colors
value_sum = 0
ticks = [] # list of centered position of the labels
labels = []
label2code = {} # dictionary of numerical values asigned to each label
for code, (label, value) in enumerate(
obs_tidy.index.value_counts().loc[cluster_list].iteritems()
):
ticks.append(value_sum + (value / 2))
labels.append(label)
value_sum += value
label2code[label] = code
groupby_cmap = mpl.colors.ListedColormap(adata.uns[f'{clust}_colors'])
groupby_ax = fig.add_subplot(axs[3, 0])
groupby_ax.imshow(
np.array([[label2code[lab] for lab in obs_tidy.index]]),
aspect='auto',
cmap=groupby_cmap,
)
groupby_ax.grid(False)
groupby_ax.yaxis.set_ticks([])
groupby_ax.set_xticks(ticks,labels,fontsize='xx-small',rotation=90)
groupby_ax.set_ylabel('Cluster',fontsize='x-small',rotation=0,ha='right',va='center')
#sil
sil_ax = fig.add_subplot(axs[2, 0])
#max_index = df[sil_key].idxmax() #df.loc[max_index,sil_key] = 1 #min_index = df[sil_key].idxmin() #df.loc[min_index,sil_key] = -1 #not needed
a=np.array([df[sil_key]]) #f'{clust}_silhuette'
a_tile = np.tile(a,(int(len(df)/80),1))
sil_ax.imshow(a_tile,cmap='bwr',norm=norm2)
sil_ax.xaxis.set_ticks([])
sil_ax.yaxis.set_ticks([])
sil_ax.set_ylabel('Silhouette',fontsize='x-small',rotation=0,ha='right',va='center')
sil_ax.grid(False)
#dendrogram
dendro_ax = fig.add_subplot(axs[0, 0], sharex=heatmap_ax)
#_plot_dendrogram(dendro_ax, adata, groupby, dendrogram_key=dendrogram,ticks=ticks, orientation='top', )
dendro_info = adata.uns[f'dendrogram_{clust}']['dendrogram_info']
leaves = dendro_info["ivl"]
icoord = np.array(dendro_info['icoord'])
dcoord = np.array(dendro_info['dcoord'])
orig_ticks = np.arange(5, len(leaves) * 10 + 5, 10).astype(float)
for xs, ys in zip(icoord, dcoord):
if ticks is not None:
xs = translate_pos(xs, ticks, orig_ticks)
dendro_ax.plot(xs, ys, color='#555555')
dendro_ax.tick_params(bottom=False, top=False, left=False, right=False)
ticks = ticks if ticks is not None else orig_ticks
dendro_ax.set_xticks(ticks)
#dendro_ax.set_xticklabels(leaves, fontsize='small', rotation=90)
dendro_ax.set_xticklabels([])
dendro_ax.tick_params(labelleft=False, labelright=False)
dendro_ax.grid(False)
dendro_ax.spines['right'].set_visible(False)
dendro_ax.spines['top'].set_visible(False)
dendro_ax.spines['left'].set_visible(False)
dendro_ax.spines['bottom'].set_visible(False)
# plot colorbar
cbar_ax = fig.add_subplot(axs[1, 2])
mappable = mpl.cm.ScalarMappable(norm=norm, cmap='viridis')
cbar = plt.colorbar(mappable=mappable, cax=cbar_ax)
cbar_ax.tick_params(axis='both', which='major', labelsize='xx-small',rotation=90,length=.1)
cbar_ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(locs=[0,1]))
cbar.set_label('Expression', fontsize='xx-small',labelpad=-5)
# plot colorbar2
cbar_ax = fig.add_subplot(axs[1, 3])
mappable = mpl.cm.ScalarMappable(norm=norm2, cmap='bwr')
cbar = plt.colorbar(mappable=mappable, cax=cbar_ax)
cbar_ax.tick_params(axis='both', which='major', labelsize='xx-small',rotation=90,length=.1)
cbar_ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(locs=[-1,0,1]))
cbar.set_label('Silhouette Score', fontsize='xx-small',labelpad=0)
#return dict
return_ax_dict = {'heatmap_ax': heatmap_ax}
return_ax_dict['groupby_ax'] = groupby_ax
return_ax_dict['dendrogram_ax'] = dendro_ax
return(fig)
def translate_pos(pos_list, new_ticks, old_ticks):
"""
transforms the dendrogram coordinates to a given new position.
"""
# of given coordinates.
if not isinstance(old_ticks, list):
# assume that the list is a numpy array
old_ticks = old_ticks.tolist()
new_xs = []
for x_val in pos_list:
if x_val in old_ticks:
new_x_val = new_ticks[old_ticks.index(x_val)]
else:
# find smaller and bigger indices
idx_next = np.searchsorted(old_ticks, x_val, side="left")
idx_prev = idx_next - 1
old_min = old_ticks[idx_prev]
old_max = old_ticks[idx_next]
new_min = new_ticks[idx_prev]
new_max = new_ticks[idx_next]
new_x_val = ((x_val - old_min) / (old_max - old_min)) * (
new_max - new_min
) + new_min
new_xs.append(new_x_val)
return new_xs
#functions
# count the neighbors.
class NeighborsCounter:
def __init__(self, rad, xy=['CentroidX', 'CentroidY']):
self.rad = rad
self.xy = xy
def query_balltree_vanilla(self, coords_np):
"""
input coords_np:
these are coordinates. possible shape: (N,2)
output neighbor_indices:
this is a list of lists.
there is one list per row in coords_np (i.e. there are N)
the i'th list contains the indices of the neighbors of i,
not including itself.
"""
n_points = coords_np.shape[0]
print(f'Counting neighbors for {n_points} points.')
tree = cKDTree(coords_np)
neighbor_indices = tree.query_ball_tree(tree, self.rad)
for i in range(n_points):
neighbor_indices[i].remove(i)
return neighbor_indices
def run(self, dataframe):
"""
Splits the input dataframe into cell types and coordinates
Runs query_balltree_vanilla on the coordinates
Uses the neighbor indices to get cell type neighbor counts.
Input:
a dataframe with boolean cell type columns and coordinate columns
the coordinate columns by default are named ['CentroidX', 'CentroidY']
(coordinate column names are stored in attribute self.xy)
Output:
a dataframe with the same shape and index as the input dataframe.
"""
types = [c for c in dataframe.columns if c not in self.xy]
#why do we have to do this?
types.remove('slide')
g = self.query_balltree_vanilla(dataframe[self.xy].to_numpy())
counts = np.zeros((len(g), len(types)))
df_arra = dataframe[types].to_numpy()
#return(counts)
for n in range(dataframe.shape[0]):
idx = np.array(g[n])
if idx.size:
counts[n, :] = df_arra[idx, :].sum(axis=0)
return pd.DataFrame(counts, index=dataframe.index, columns=types)
def plot_sil(d_sil,s_name='Tumor'):
import matplotlib.pyplot as plt
fig,ax = plt.subplots(dpi=200)
pd.Series(d_sil).plot(ax=ax)
ax.set_title(f'{s_name}: Mean Silhoutte Scores')
ax.set_xlabel('k')
plt.tight_layout()
fig.savefig(f'{s_name}_Silhouette.pdf')