-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVT_AE.py
executable file
·108 lines (90 loc) · 3.48 KB
/
VT_AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# -*- coding: utf-8 -*-
"""
@author: Pankaj Mishra
"""
import torch
import torch.nn as nn
from student_transformer import ViT
import model_res18 as M
from einops import rearrange
import spatial as S
#### NETWORK DECLARATION ####
# torch.autograd.set_detect_anomaly(True) # this is to check any problem in the network by backtracking
class VT_AE(nn.Module):
def __init__(self, image_size = 512,
patch_size = 64,
num_classes = 1,
dim = 512,
depth = 6,
heads = 8,
mlp_dim = 1024,
train= True,
pretrained_path = False):
super(VT_AE, self).__init__()
self.vt = ViT(
image_size = image_size,
patch_size = patch_size,
num_classes = num_classes,
dim = dim,
depth = depth,
heads = heads,
mlp_dim = mlp_dim )
self.decoder = M.decoder2(8)
# self.G_estimate= mdn1.MDN() # Trained in modular fashion
self.Digcap = S.DigitCaps(in_num_caps=((image_size//patch_size)**2)*8*8, in_dim_caps=8)
#self.mask = torch.ones(1, image_size//patch_size, image_size//patch_size).bool().cuda()
self.Train = train
self.pretrained_path = pretrained_path
if self.Train:
if pretrained_path == False:
print("\nInitializing network weights.........")
initialize_weights(self.vt, self.decoder)
def forward(self,x):
b = x.size(0)
encoded = self.vt(x)
if self.Train:
encoded = add_noise(encoded)
encoded1, vectors = self.Digcap(encoded.view(b,encoded.size(1)*8*8,-1))
recons = self.decoder(encoded1.view(b,-1,8,8))
# pi, mu, sigma = self.G_estimate(encoded)
# return encoded, pi, sigma, mu, recons
return encoded, recons
# Initialize weight function
def initialize_weights(*models):
for model in models:
for module in model.modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.weight.data.fill_(1)
module.bias.data.zero_()
##### Adding Noise ############
def add_noise(latent, noise_type="gaussian", sd=0.2):
"""Here we add noise to the latent features concatenated from the 4 autoencoders.
Arguements:
'gaussian' (string): Gaussian-distributed additive noise.
'speckle' (string) : Multiplicative noise using out = image + n*image, where n is uniform noise with specified mean & variance.
'sd' (integer) : standard deviation used for geenrating noise
Input :
latent : numpy array or cuda tensor.
Output:
Array: Noise added input, can be np array or cuda tnesor.
"""
assert sd >= 0.0
if noise_type == "gaussian":
mean = 0.
n = torch.distributions.Normal(torch.tensor([mean]), torch.tensor([sd]))
noise = n.sample(latent.size()).squeeze(-1).cuda()
latent = latent + noise
return latent
if noise_type == "speckle":
noise = torch.randn(latent.size()).cuda()
latent = latent + latent * noise
return latent
if __name__ == "__main__":
from torchsummary import summary
mod = VT_AE().cuda()
print(mod)
summary(mod, (3,512,512))