-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.py
executable file
·543 lines (451 loc) · 21.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
from __future__ import division
from __future__ import absolute_import
import os
import sys
import shutil
import time
import random
import argparse
import torch
import torch.backends.cudnn as cudnn
import torchvision.datasets as dset
import torchvision.transforms as transforms
from utils import AverageMeter, RecorderMeter, time_string, convert_secs2time
from utils_.reorganize_param import reorganize_param
# from tensorboardX import SummaryWriter
import models
# import yellowFin tuner
sys.path.append("./tuner_utils")
from tuner_utils.yellowfin import YFOptimizer
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
################# Options ##################################################
############################################################################
parser = argparse.ArgumentParser(description='Training network for image classification',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data_path', default='/home/elliot/data/pytorch/svhn/',
type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'imagenet', 'svhn', 'stl10', 'mnist'],
help='Choose between Cifar10/100 and ImageNet.')
parser.add_argument('--arch', metavar='ARCH', default='lbcnn', choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnext29_8_64)')
# Optimization options
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs to train.')
parser.add_argument('--optimizer', type=str, default='SGD',
choices=['SGD', 'Adam', 'YF'])
parser.add_argument('--batch_size', type=int, default=128, help='Batch size.')
parser.add_argument('--learning_rate', type=float,
default=0.001, help='The Learning Rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', type=float, default=1e-4,
help='Weight decay (L2 penalty).')
parser.add_argument('--schedule', type=int, nargs='+', default=[80, 120],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gammas', type=float, nargs='+', default=[0.1, 0.1],
help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
# Checkpoints
parser.add_argument('--print_freq', default=100, type=int,
metavar='N', help='print frequency (default: 200)')
parser.add_argument('--save_path', type=str, default='./save/',
help='Folder to save checkpoints and log.')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--start_epoch', default=0, type=int,
metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--evaluate', dest='evaluate',
action='store_true', help='evaluate model on validation set')
parser.add_argument('--fine_tune', dest='fine_tune', action='store_true',
help='fine tuning from the pre-trained model, force the start epoch be zero')
parser.add_argument('--model_only', dest='model_only', action='store_true',
help='only save the model without external utils_')
# Acceleration
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--gpu_id', type=int, default=0,
help='device range [0,ngpu-1]')
parser.add_argument('--workers', type=int, default=4,
help='number of data loading workers (default: 2)')
# random seed
parser.add_argument('--manualSeed', type=int, default=5000, help='manual seed')
##########################################################################
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
if args.ngpu == 1:
# make only device #gpu_id visible, then
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
args.use_cuda = args.ngpu > 0 and torch.cuda.is_available() # check GPU
# Give a random seed if no manual configuration
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if args.use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
cudnn.benchmark = True
###############################################################################
###############################################################################
def main():
# Init logger6
if not os.path.isdir(args.save_path):
os.makedirs(args.save_path)
log = open(os.path.join(args.save_path,
'log_seed_{}.txt'.format(args.manualSeed)), 'w')
print_log('save path : {}'.format(args.save_path), log)
state = {k: v for k, v in args._get_kwargs()}
print_log(state, log)
print_log("Random Seed: {}".format(args.manualSeed), log)
print_log("python version : {}".format(
sys.version.replace('\n', ' ')), log)
print_log("torch version : {}".format(torch.__version__), log)
print_log("cudnn version : {}".format(
torch.backends.cudnn.version()), log)
# Init the tensorboard path and writer
tb_path = os.path.join(args.save_path, 'tb_log')
# logger = Logger(tb_path)
# writer = SummaryWriter(tb_path)
# Init dataset
if not os.path.isdir(args.data_path):
os.makedirs(args.data_path)
if args.dataset == 'cifar10':
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
elif args.dataset == 'cifar100':
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
std = [x / 255 for x in [68.2, 65.4, 70.4]]
elif args.dataset == 'svhn':
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
elif args.dataset == 'mnist':
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
elif args.dataset == 'imagenet':
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
else:
assert False, "Unknow dataset : {}".format(args.dataset)
if args.dataset == 'imagenet':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]) # here is actually the validation dataset
else:
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
if args.dataset == 'mnist':
train_data = dset.MNIST(
args.data_path, train=True, transform=train_transform, download=True)
test_data = dset.MNIST(args.data_path, train=False,
transform=test_transform, download=True)
num_classes = 10
elif args.dataset == 'cifar10':
train_data = dset.CIFAR10(
args.data_path, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR10(
args.data_path, train=False, transform=test_transform, download=True)
num_classes = 10
elif args.dataset == 'cifar100':
train_data = dset.CIFAR100(
args.data_path, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR100(
args.data_path, train=False, transform=test_transform, download=True)
num_classes = 100
elif args.dataset == 'svhn':
train_data = dset.SVHN(args.data_path, split='train',
transform=train_transform, download=True)
test_data = dset.SVHN(args.data_path, split='test',
transform=test_transform, download=True)
num_classes = 10
elif args.dataset == 'stl10':
train_data = dset.STL10(
args.data_path, split='train', transform=train_transform, download=True)
test_data = dset.STL10(args.data_path, split='test',
transform=test_transform, download=True)
num_classes = 10
elif args.dataset == 'imagenet':
train_dir = os.path.join(args.data_path, 'train')
test_dir = os.path.join(args.data_path, 'val')
train_data = dset.ImageFolder(train_dir, transform=train_transform)
test_data = dset.ImageFolder(test_dir, transform=test_transform)
num_classes = 1000
else:
assert False, 'Do not support dataset : {}'.format(args.dataset)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
print_log("=> creating model '{}'".format(args.arch), log)
# Init model, criterion, and optimizer
net = models.__dict__[args.arch](num_classes)
print_log("=> network :\n {}".format(net), log)
if args.use_cuda:
if args.ngpu > 1:
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
# define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss()
if args.optimizer == "SGD":
print("using SGD as optimizer")
optimizer = torch.optim.SGD(filter(lambda param: param.requires_grad, net.parameters()),
lr=state['learning_rate'],
momentum=state['momentum'], weight_decay=state['decay'], nesterov=True)
elif args.optimizer == "Adam":
print("using Adam as optimizer")
optimizer = torch.optim.Adam(filter(lambda param: param.requires_grad, net.parameters()),
lr=state['learning_rate'],
weight_decay=state['decay'])
elif args.optimizer == "YF":
print("using YellowFin as optimizer")
optimizer = YFOptimizer(filter(lambda param: param.requires_grad, net.parameters()), lr=state['learning_rate'],
mu=state['momentum'], weight_decay=state['decay'])
elif args.optimizer == "RMSprop":
print("using RMSprop as optimizer")
optimizer = torch.optim.RMSprop(filter(lambda param: param.requires_grad, net.parameters()),
lr=state['learning_rate'], alpha=0.99, eps=1e-08, weight_decay=0, momentum=0)
if args.use_cuda:
net.cuda()
criterion.cuda()
recorder = RecorderMeter(args.epochs) # count number of epoches
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print_log("=> loading checkpoint '{}'".format(args.resume), log)
checkpoint = torch.load(args.resume)
if not (args.fine_tune):
args.start_epoch = checkpoint['epoch']
recorder = checkpoint['recorder']
optimizer.load_state_dict(checkpoint['optimizer'])
state_tmp = net.state_dict()
if 'state_dict' in checkpoint.keys():
state_tmp.update(checkpoint['state_dict'])
else:
state_tmp.update(checkpoint)
net.load_state_dict(state_tmp)
# net.load_state_dict(checkpoint['state_dict'])
print_log("=> loaded checkpoint '{}' (epoch {})".format(
args.resume, args.start_epoch), log)
else:
print_log("=> no checkpoint found at '{}'".format(args.resume), log)
else:
print_log(
"=> do not use any checkpoint for {} model".format(args.arch), log)
if args.evaluate:
validate(test_loader, net, criterion, log)
return
# Main loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(args.start_epoch, args.epochs):
current_learning_rate, current_momentum = adjust_learning_rate(
optimizer, epoch, args.gammas, args.schedule)
# Display simulation time
need_hour, need_mins, need_secs = convert_secs2time(
epoch_time.avg * (args.epochs - epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(
need_hour, need_mins, need_secs)
print_log(
'\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [LR={:6.4f}][M={:1.2f}]'.format(time_string(), epoch, args.epochs,
need_time, current_learning_rate,
current_momentum)
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False),
100 - recorder.max_accuracy(False)), log)
# # ============ TensorBoard logging ============#
# # we show the model param initialization to give a intuition when we do the fine tuning
# for name, param in net.named_parameters():
# name = name.replace('.', '/')
# if "delta_th" not in name:
# writer.add_histogram(name, param.clone().cpu().detach().numpy(), epoch)
# # ============ TensorBoard logging ============#
# train for one epoch
train_acc, train_los = train(
train_loader, net, criterion, optimizer, epoch, log)
# evaluate on validation set
val_acc, val_los = validate(test_loader, net, criterion, log)
is_best = val_acc > recorder.max_accuracy(istrain=False)
recorder.update(epoch, train_los, train_acc, val_los, val_acc)
if args.model_only:
checkpoint_state = {'state_dict': net.state_dict()}
else:
checkpoint_state = {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net.state_dict(),
'recorder': recorder,
'optimizer': optimizer.state_dict(),
}
save_checkpoint(checkpoint_state, is_best,
args.save_path, 'checkpoint.pth.tar', log)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
recorder.plot_curve(os.path.join(args.save_path, 'curve.png'))
# save addition accuracy log for plotting
accuracy_logger(base_dir=args.save_path,
epoch=epoch,
train_accuracy=train_acc,
test_accuracy=val_acc)
# ============ TensorBoard logging ============#
# Log the graidents distribution
# for name, param in net.named_parameters():
# name = name.replace('.', '/')
# writer.add_histogram(name + '/grad',
# param.grad.clone().cpu().data.numpy(), epoch + 1, bins='tensorflow')
# ## Log the weight and bias distribution
# for name, module in net.named_modules():
# name = name.replace('.', '/')
# class_name = str(module.__class__).split('.')[-1].split("'")[0]
# if "Conv2d" in class_name or "Linear" in class_name:
# if module.weight is not None:
# writer.add_histogram(name + '/weight/',
# module.weight.clone().cpu().data.numpy(), epoch + 1, bins='tensorflow')
# writer.add_scalar('loss/train_loss', train_los, epoch + 1)
# writer.add_scalar('loss/test_loss', val_los, epoch + 1)
# writer.add_scalar('accuracy/train_accuracy', train_acc, epoch + 1)
# writer.add_scalar('accuracy/test_accuracy', val_acc, epoch + 1)
# ============ TensorBoard logging ============#
log.close()
# train function (forward, backward, update)
def train(train_loader, model, criterion, optimizer, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.use_cuda:
# the copy will be asynchronous with respect to the host.
target = target.cuda(async=True)
input = input.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_log(' Epoch: [{:03d}][{:03d}/{:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f}) '.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5) + time_string(), log)
print_log(
' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg),
log)
return top1.avg, losses.avg
def validate(val_loader, model, criterion, log):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
if args.use_cuda:
target = target.cuda(async=True)
input = input.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
print_log(
' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg),
log)
return top1.avg, losses.avg
def print_log(print_string, log):
print("{}".format(print_string))
log.write('{}\n'.format(print_string))
log.flush()
def save_checkpoint(state, is_best, save_path, filename, log):
filename = os.path.join(save_path, filename)
torch.save(state, filename)
if is_best: # copy the checkpoint to the best model if it is the best_accuracy
bestname = os.path.join(save_path, 'model_best.pth.tar')
shutil.copyfile(filename, bestname)
print_log("=> Obtain best accuracy, and update the best model", log)
def adjust_learning_rate(optimizer, epoch, gammas, schedule):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.learning_rate
mu = args.momentum
if args.optimizer != "YF":
assert len(gammas) == len(
schedule), "length of gammas and schedule should be equal"
for (gamma, step) in zip(gammas, schedule):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
elif args.optimizer == "YF":
lr = optimizer._lr
mu = optimizer._mu
return lr, mu
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def accuracy_logger(base_dir, epoch, train_accuracy, test_accuracy):
file_name = 'accuracy.txt'
file_path = "%s/%s" % (base_dir, file_name)
# create and format the log file if it does not exists
if not os.path.exists(file_path):
create_log = open(file_path, 'w')
create_log.write('epochs train test\n')
create_log.close()
recorder = {}
recorder['epoch'] = epoch
recorder['train'] = train_accuracy
recorder['test'] = test_accuracy
# append the epoch index, train accuracy and test accuracy:
with open(file_path, 'a') as accuracy_log:
accuracy_log.write(
'{epoch} {train} {test}\n'.format(**recorder))
if __name__ == '__main__':
main()