-
Notifications
You must be signed in to change notification settings - Fork 105
/
model.py
49 lines (36 loc) · 1.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import keras
import tensorflow as tf
from keras import layers
from keras.models import load_model
class Model(object):
def __init__(self, input_shape, output_labels_size):
model = keras.Sequential()
model.add(layers.Convolution2D(16, (3, 3), padding='same', input_shape=input_shape, activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Convolution2D(32, (3, 3), padding='same', activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Convolution2D(64, (3, 3), padding='same', activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(output_labels_size, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=tf.train.AdamOptimizer(),
metrics=['top_k_categorical_accuracy'])
self.model = model
print(model.summary())
def fit(self, X, Y, batch_size=256, epochs=5, validation_split=0.1, verbose=2):
self.model.fit(x=X, y=Y, batch_size=batch_size, epochs=epochs,
validation_split=validation_split, verbose=verbose)
def score(self, X, Y):
return self.model.evaluate(X, Y, verbose=0)
def predict_one(self, x):
x = np.expand_dims(x, axis=0)
pred = self.model.predict(x)[0]
return pred
def predict(self, X):
return self.model.predict(X)
def save(self, file):
self.model.save(file)
def load(file):
return load_model(file)