diff --git a/docs/changelog/117826.yaml b/docs/changelog/117826.yaml new file mode 100644 index 0000000000000..98ca84bc0bd96 --- /dev/null +++ b/docs/changelog/117826.yaml @@ -0,0 +1,5 @@ +pr: 117826 +summary: "Switch ELSER service to elasticsearch service in semantic search tutorial" +area: Docs +type: doc +issues: ["117829"] diff --git a/docs/reference/search/search-your-data/semantic-search-semantic-text.asciidoc b/docs/reference/search/search-your-data/semantic-search-semantic-text.asciidoc index 6c3f3b2128740..3d799cd68f1b9 100644 --- a/docs/reference/search/search-your-data/semantic-search-semantic-text.asciidoc +++ b/docs/reference/search/search-your-data/semantic-search-semantic-text.asciidoc @@ -14,7 +14,7 @@ You don't need to define model related settings and parameters, or create {infer The recommended way to use <> in the {stack} is following the `semantic_text` workflow. When you need more control over indexing and query settings, you can still use the complete {infer} workflow (refer to <> to review the process). -This tutorial uses the <> for demonstration, but you can use any service and their supported models offered by the {infer-cap} API. +This tutorial uses the <> for demonstration, but you can use any service and their supported models offered by the {infer-cap} API. [discrete] @@ -34,14 +34,15 @@ Create an inference endpoint by using the <>: ------------------------------------------------------------ PUT _inference/sparse_embedding/my-elser-endpoint <1> { - "service": "elser", <2> + "service": "elasticsearch", <2> "service_settings": { "adaptive_allocations": { <3> "enabled": true, "min_number_of_allocations": 3, "max_number_of_allocations": 10 }, - "num_threads": 1 + "num_threads": 1, + "model_id": ".elser_model_2" <4> } } ------------------------------------------------------------ @@ -49,9 +50,12 @@ PUT _inference/sparse_embedding/my-elser-endpoint <1> <1> The task type is `sparse_embedding` in the path as the `elser` service will be used and ELSER creates sparse vectors. The `inference_id` is `my-elser-endpoint`. -<2> The `elser` service is used in this example. +<2> The `elasticsearch` service is used in this example. <3> This setting enables and configures {ml-docs}/ml-nlp-auto-scale.html#nlp-model-adaptive-allocations[adaptive allocations]. Adaptive allocations make it possible for ELSER to automatically scale up or down resources based on the current load on the process. +<4> The `model_id` must be the ID of one of the built-in ELSER models. +Valid values are `.elser_model_2` and `.elser_model_2_linux-x86_64`. +For further details, refer to the {ml-docs}/ml-nlp-elser.html[ELSER model documentation]. [NOTE] ==== @@ -282,4 +286,4 @@ query from the `semantic-embedding` index: * If you want to use `semantic_text` in hybrid search, refer to https://colab.research.google.com/github/elastic/elasticsearch-labs/blob/main/notebooks/search/09-semantic-text.ipynb[this notebook] for a step-by-step guide. * For more information on how to optimize your ELSER endpoints, refer to {ml-docs}/ml-nlp-elser.html#elser-recommendations[the ELSER recommendations] section in the model documentation. -* To learn more about model autoscaling, refer to the {ml-docs}/ml-nlp-auto-scale.html[trained model autoscaling] page. \ No newline at end of file +* To learn more about model autoscaling, refer to the {ml-docs}/ml-nlp-auto-scale.html[trained model autoscaling] page.