This method of configuring a Windows virtual machine for use with WinApps is significantly more involved than utilising Docker
or Podman
. Nevertheless, expert users may prefer this method due to its greater flexibility and wider range of customisation options.
Before beginning, it is important to have a basic understanding of the various components involved in this particular method.
QEMU
is a FOSS emulator that performs hardware virtualisation, enabling operating systems and applications designed for one architecture (e.g., aarch64) to run on systems with differing architectures (e.g., amd64). When used in conjunction withKVM
, it can run virtual machines at near-native speed (provided the guest virtual machine matches the host architecture) by utilising hardware extensions like Intel VT-x or AMD-V.KVM
is a Linux kernel module that enables the kernel to function as a type-1 hypervisor.KVM
runs directly on the underlying hardware (as opposed to on top of the GNU/Linux host OS). For many workloads, the performance overhead is minimal, often in the range of 2-5%.KVM
requires a CPU with hardware virtualisation extensions.libvirt
is an open-source API, daemon, and management tool for orchestrating platform virtualisation. It provides a consistent and stable interface for managing various virtualisation technologies, includingKVM
andQEMU
(as well as others).libvirt
offers a wide range of functionality to control the lifecycle of virtual machines, storage, networks, and interfaces, making it easier to interact with virtualisation capabilities programmatically or via command-line tools.virt-manager
(Virtual Machine Manager) is a GUI desktop application that provides an easy-to-use interface for creating, configuring and controlling virtual machines.virt-manager
utiliseslibvirt
as a backend.
Together, these components form a powerful and flexible virtualization stack, with KVM
providing low-level kernel-based virtualisation capabilities, QEMU
providing high-level userspace-based virtualisation functionality, libvirt
managing the resources and virt-manager
offering an intuitive graphical management interface.
-
Ensure your CPU supports hardware virtualisation extensions by reading this article.
-
Install all dependencies by installing
virt-manager
. This will ensure that your package manager automatically installs all the necessary components.sudo apt install virt-manager # Debian/Ubuntu sudo dnf install virt-manager # Fedora/RHEL sudo pacman -S virt-manager # Arch Linux sudo emerge app-emulation/virt-manager # Gentoo Linux
-
Configure
libvirt
to use the 'system' URI by adding the lineLIBVIRT_DEFAULT_URI="qemu:///system"
to your preferred shell profile file (e.g.,.bashrc
,.zshrc
, etc.).echo "export LIBVIRT_DEFAULT_URI=\"qemu:///system\"" >> ~/.bashrc
-
Install
QEMU Guest Agent
.sudo apt install qemu-guest-agent # Debian/Ubuntu sudo dnf install qemu-guest-agent # Fedora/RHEL sudo pacman -S qemu-guest-agent # Arch Linux sudo emerge app-emulation/qemu-guest-agent # Gentoo Linux sudo systemctl enable qemu-guest-agent sudo systemctl start qemu-guest-agent
Note
QEMU Guest Agent
is a helper daemon used to exchange information and commands between host and guest operating systems.
You can read more about QEMU Guest Agent
here.
-
Configure rootless
libvirt
andkvm
by adding your user to groups of the same name.sudo usermod -a -G kvm $(id -un) # Add the user to the 'kvm' group. sudo usermod -a -G libvirt $(id -un) # Add the user to the 'libvirt' group. sudo reboot # Reboot the system to ensure the user is added to the relevant groups.
Note: Due to a known bug in
rpm-ostree
, which affects various distributions such as Silverblue, Bazzite, Bluefin, Kinoite, Aurora, UCore, and others, the commands provided earlier may not properly add your user to all required groups. If thegroups $USER
command does not show your user as being part of the necessary groups, you'll need to manually add these groups to/etc/group
if they are present in/usr/lib/group
.To resolve this:
-
Identify which groups are missing from the output of
groups $USER
. -
Use the following snippet to add each missing group to
/etc/group
. Ensure you replace "kvm" with the name of the missing group.grep -E '^kvm:' /usr/lib/group | sudo tee -a /etc/group sudo usermod -aG kvm $USER
-
Reboot your system to ensure that the user is correctly added to the relevant groups.
-
-
If relevant to your distribution, disable
AppArmor
for thelibvirt
daemon.sudo ln -s /etc/apparmor.d/usr.sbin.libvirtd /etc/apparmor.d/disable/ # Disable AppArmor for the libvirt daemon by creating a symbolic link.
Note
Systems with SELinux
may also require security policy adjustments if virtual machine images are stored outside the default /var/lib/libvirt/images
directory. Read this guide for more information.
- Download a Windows 10 or Windows 11 installation
.ISO
image.
Important
'Professional', 'Enterprise' or 'Server' editions of Windows are required to run RDP applications. Windows 'Home' will NOT suffice.
- Download VirtIO drivers for the Windows virtual machine.
Note
VirtIO drivers enhance system performance and minimize overhead by enabling the Windows virtual machine to use specialised network and disk device drivers. These drivers are aware that they are operating inside a virtual machine, and cooperate with the hypervisor. This approach eliminates the need for the hypervisor to emulate physical hardware devices, which is a computationally expensive process. This setup allows guests to achieve high-performance network and disk operations, leveraging the benefits of paravirtualisation.
The above link contains the latest release of the VirtIO
drivers for Windows, compiled and signed by Red Hat. Older versions of the VirtIO
drivers can be downloaded here.
You can read more about VirtIO
here and here.
- Open
virt-manager
.
Note
The name given to the application can vary between GNU/Linux distributions (e.g., 'Virtual Machines', 'Virtual Machine Manager', etc.)
- Navigate to
Edit
→Preferences
. EnsureEnable XML editing
is enabled, then click theClose
button.
- Create a new virtual machine by clicking the
+
button.
- Choose
Local install media
and clickForward
.
- Select the location of your Windows 10 or 11
.ISO
by clickingBrowse...
andBrowse Local
. EnsureAutomatically detect from the installation media / source
is enabled.
- Configure the RAM and CPU cores allocated to the Windows virtual machine. We recommend
2
CPUs and4096MB
of RAM. We will use theVirtIO
Memory Ballooning service, which means the virtual machine can use up to4096MB
of memory, but it will only consume this amount if necessary.
- Configure the virtual disk by setting its maximum size. While this size represents the largest it can grow to, the disk will only use this space as needed.
- Name your virtual machine
RDPWindows
to ensure it is recognized by WinApps, and select the option toCustomize configuration before installation
.
- After clicking
Finish
, selectCopy host CPU configuration
under 'CPUs', and then clickApply
.
Note
Sometimes this feature gets disabled after installing Windows. Make sure to check and re-enable this option after the installation is complete.
- (Optional) Assign specific physical CPU cores to the virtual machine. This can improve performance by reducing context switching and ensuring that the virtual machine's workload consistently uses the same cores, leading to better CPU cache utilisation.
-
Run
lscpu -e
to determine which L1, L2 and L3 caches are associated with which CPU cores.Example 1 (Intel 11th Gen Core i7-1185G7):
CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ 0 0 0 0 0:0:0:0 yes 4800.0000 400.0000 1 0 0 1 1:1:1:0 yes 4800.0000 400.0000 2 0 0 2 2:2:2:0 yes 4800.0000 400.0000 3 0 0 3 3:3:3:0 yes 4800.0000 400.0000 4 0 0 0 0:0:0:0 yes 4800.0000 400.0000 5 0 0 1 1:1:1:0 yes 4800.0000 400.0000 6 0 0 2 2:2:2:0 yes 4800.0000 400.0000 7 0 0 3 3:3:3:0 yes 4800.0000 400.0000
- C0 = T0+T4 → L10+L20+L30
- C1 = T1+T5 → L11+L21+L30
- C2 = T2+T6 → L12+L22+L30
- C3 = T3+T7 → L13+L23+L30
Example 2 (AMD Ryzen 5 1600):
CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ 0 0 0 0 0:0:0:0 yes 3800.0000 1550.0000 1 0 0 0 0:0:0:0 yes 3800.0000 1550.0000 2 0 0 1 1:1:1:0 yes 3800.0000 1550.0000 3 0 0 1 1:1:1:0 yes 3800.0000 1550.0000 4 0 0 2 2:2:2:0 yes 3800.0000 1550.0000 5 0 0 2 2:2:2:0 yes 3800.0000 1550.0000 6 0 0 3 3:3:3:1 yes 3800.0000 1550.0000 7 0 0 3 3:3:3:1 yes 3800.0000 1550.0000 8 0 0 4 4:4:4:1 yes 3800.0000 1550.0000 9 0 0 4 4:4:4:1 yes 3800.0000 1550.0000 10 0 0 5 5:5:5:1 yes 3800.0000 1550.0000 11 0 0 5 5:5:5:1 yes 3800.0000 1550.0000
- C0 = T0+T1 → L10+L20+L30
- C1 = T2+T3 → L11+L21+L30
- C2 = T4+T5 → L12+L22+L30
- C3 = T6+T7 → L13+L23+L31
- C4 = T8+T9 → L14+L24+L31
- C5 = T10+T11 → L15+L25+L31
-
Select which CPU cores to 'pin'. You should aim to select a combination of CPU cores that minimises sharing of caches between Windows and GNU/Linux.
Example 1:
- CPU cores share the same singular L3 cache, so this cannot be optimised.
- CPU cores utilise different L1 and L2 caches, so isolatng corresponding thread pairs will help improve performance.
- Thus, if limiting the virtual machine to a maximum of 4 threads, there are 10 possible optimal configurations:
- T0+T4
- T1+T5
- T2+T6
- T3+T7
- T0+T4+T1+T5
- T0+T4+T2+T6
- T0+T4+T3+T7
- T1+T5+T2+T6
- T1+T5+T3+T7
- T2+T6+T3+T7
Example 2:
- Threads 0-5 utilise one L3 cache whereas threads 6-11 utilise a different L3 cache. Thus, one of these two sets of threads should be pinned to the virtual machine.
- Pinning and isolating fewer than these (e.g. threads 8-11) would result in the host system making use of the L3 cache in threads 6 and 7, resulting in cache evictions and therefore bad performance.
- Thus, there are only two possible optimal configurations:
- T0+T1+T2+T3+T4+T5
- T6+T7+T8+T9+T10+T11
-
Prepare and add/modify the following to the
<vcpu>
,<cputune>
and<cpu>
sections, adjusting the values to match your selected threads.Example 1: The following selects 'T2+T6+T3+T7'.
<vcpu placement="static">4</vcpu> <cputune> <vcpupin vcpu="0" cpuset="2"/> <vcpupin vcpu="1" cpuset="6"/> <vcpupin vcpu="2" cpuset="3"/> <vcpupin vcpu="3" cpuset="7"/> </cputune> <cpu mode="host-passthrough" check="none" migratable="on"> <topology sockets="1" dies="1" clusters="1" cores="2" threads="2"/> </cpu>
Example 2: The following selects 'T6+T7+T8+T9+T10+T11'.
<vcpu placement="static">6</vcpu> <cputune> <vcpupin vcpu="0" cpuset="6"/> <vcpupin vcpu="1" cpuset="7"/> <vcpupin vcpu="2" cpuset="8"/> <vcpupin vcpu="3" cpuset="9"/> <vcpupin vcpu="4" cpuset="10"/> <vcpupin vcpu="5" cpuset="11"/> </cputune> <cpu mode="host-passthrough" check="none" migratable="on"> <topology sockets="1" dies="1" clusters="1" cores="3" threads="2"/> </cpu>
-
Note
More information on configuring CPU pinning can be found in this excellent guide.
- Navigate to the
XML
tab, and edit the<clock>
section to disable all timers except for the hypervclock, thereby drastically reducing idle CPU usage. Once changed, clickApply
.<clock offset='localtime'> <timer name='rtc' present='no' tickpolicy='catchup'/> <timer name='pit' present='no' tickpolicy='delay'/> <timer name='hpet' present='no'/> <timer name='kvmclock' present='no'/> <timer name='hypervclock' present='yes'/> </clock>
-
Enable Hyper-V enlightenments by adding the following to the
<hyperv>
section. Once changed, clickApply
.<hyperv> <relaxed state='on'/> <vapic state='on'/> <spinlocks state='on' retries='8191'/> <vpindex state='on'/> <synic state='on'/> <stimer state='on'> <direct state='on'/> </stimer> <reset state='on'/> <frequencies state='on'/> <reenlightenment state='on'/> <tlbflush state='on'/> <ipi state='on'/> </hyperv>
Note
Hyper-V enlightenments make Windows (and other Hyper-V guests) think they are running on top of a Hyper-V compatible hypervisor. This enables use of Hyper-V specific features, allowing KVM
to implement paravirtualised interfaces for improved virtual machine performance.
-
Add the following XML snippet within the
<devices>
section to enable the GNU/Linux host to communicate with Windows usingQEMU Guest Agent
.<channel type='unix'> <source mode='bind'/> <target type='virtio' name='org.qemu.guest_agent.0'/> <address type='virtio-serial' controller='0' bus='0' port='2'/> </channel>
-
In the 'Memory' section, set the
Current allocation
to the minimum amount of memory you want the virtual machine to use, with a recommended value of1024MB
.
- (Optional) Under
Boot Options
, enableStart virtual machine on host boot up
.
- Navigate to 'SATA Disk 1' and set the
Disk bus
type toVirtIO
. This allows disk access to be paravirtualised, improving virtual machine performance.
- Navigate to 'NIC' and set the
Device model
type tovirtio
to enable paravirtualised networking.
- Click the
Add Hardware
button in the lower left, and chooseStorage
. ForDevice type
, selectCDROM device
and choose the VirtIO driver.ISO
you downloaded earlier. ClickFinish
to add the new CD-ROM device.
Important
If you skip this step, the Windows installer will fail to recognise and list the virtual hard drive you created earlier.
- Click
Begin Installation
in the top left.
Below is an example .XML
file that describes a Windows 11 virtual machine.
<domain type="kvm">
<name>RDPWindows</name>
<uuid>4d76e36e-c632-43e0-83c0-dc9f36c2823a</uuid>
<metadata>
<libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/xmlns/libvirt/domain/1.0">
<libosinfo:os id="http://microsoft.com/win/11"/>
</libosinfo:libosinfo>
</metadata>
<memory unit="KiB">8388608</memory>
<currentMemory unit="KiB">8388608</currentMemory>
<vcpu placement="static">4</vcpu>
<cputune>
<vcpupin vcpu="0" cpuset="2"/>
<vcpupin vcpu="1" cpuset="6"/>
<vcpupin vcpu="2" cpuset="3"/>
<vcpupin vcpu="3" cpuset="7"/>
</cputune>
<os firmware="efi">
<type arch="x86_64" machine="pc-q35-8.1">hvm</type>
<firmware>
<feature enabled="yes" name="enrolled-keys"/>
<feature enabled="yes" name="secure-boot"/>
</firmware>
<loader readonly="yes" secure="yes" type="pflash" format="qcow2">/usr/share/edk2/ovmf/OVMF_CODE_4M.secboot.qcow2</loader>
<nvram template="/usr/share/edk2/ovmf/OVMF_VARS_4M.secboot.qcow2" format="qcow2">/var/lib/libvirt/qemu/nvram/RDPWindows_VARS.qcow2</nvram>
<boot dev="hd"/>
</os>
<features>
<acpi/>
<apic/>
<hyperv mode="custom">
<relaxed state="on"/>
<vapic state="on"/>
<spinlocks state="on" retries="8191"/>
<vpindex state="on"/>
<synic state="on"/>
<stimer state="on">
<direct state="on"/>
</stimer>
<reset state="on"/>
<frequencies state="on"/>
<reenlightenment state="on"/>
<tlbflush state="on"/>
<ipi state="on"/>
</hyperv>
<vmport state="off"/>
<smm state="on"/>
</features>
<cpu mode="host-passthrough" check="none" migratable="on">
<topology sockets="1" dies="1" clusters="1" cores="2" threads="2"/>
</cpu>
<clock offset="localtime">
<timer name="rtc" present="no" tickpolicy="catchup"/>
<timer name="pit" present="no" tickpolicy="delay"/>
<timer name="hpet" present="no"/>
<timer name="kvmclock" present="no"/>
<timer name="hypervclock" present="yes"/>
</clock>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<pm>
<suspend-to-mem enabled="no"/>
<suspend-to-disk enabled="no"/>
</pm>
<devices>
<emulator>/usr/bin/qemu-system-x86_64</emulator>
<disk type="file" device="disk">
<driver name="qemu" type="qcow2" discard="unmap"/>
<source file="/var/lib/libvirt/images/RDPWindows.qcow2"/>
<target dev="vda" bus="virtio"/>
<address type="pci" domain="0x0000" bus="0x04" slot="0x00" function="0x0"/>
</disk>
<disk type="file" device="cdrom">
<driver name="qemu" type="raw"/>
<target dev="sdb" bus="sata"/>
<readonly/>
<address type="drive" controller="0" bus="0" target="0" unit="1"/>
</disk>
<controller type="usb" index="0" model="qemu-xhci" ports="15">
<address type="pci" domain="0x0000" bus="0x02" slot="0x00" function="0x0"/>
</controller>
<controller type="pci" index="0" model="pcie-root"/>
<controller type="pci" index="1" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="1" port="0x10"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x0" multifunction="on"/>
</controller>
<controller type="pci" index="2" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="2" port="0x11"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x1"/>
</controller>
<controller type="pci" index="3" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="3" port="0x12"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x2"/>
</controller>
<controller type="pci" index="4" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="4" port="0x13"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x3"/>
</controller>
<controller type="pci" index="5" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="5" port="0x14"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x4"/>
</controller>
<controller type="pci" index="6" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="6" port="0x15"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x5"/>
</controller>
<controller type="pci" index="7" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="7" port="0x16"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x6"/>
</controller>
<controller type="pci" index="8" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="8" port="0x17"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x02" function="0x7"/>
</controller>
<controller type="pci" index="9" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="9" port="0x18"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x03" function="0x0" multifunction="on"/>
</controller>
<controller type="pci" index="10" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="10" port="0x19"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x03" function="0x1"/>
</controller>
<controller type="pci" index="11" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="11" port="0x1a"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x03" function="0x2"/>
</controller>
<controller type="pci" index="12" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="12" port="0x1b"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x03" function="0x3"/>
</controller>
<controller type="pci" index="13" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="13" port="0x1c"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x03" function="0x4"/>
</controller>
<controller type="pci" index="14" model="pcie-root-port">
<model name="pcie-root-port"/>
<target chassis="14" port="0x1d"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x03" function="0x5"/>
</controller>
<controller type="sata" index="0">
<address type="pci" domain="0x0000" bus="0x00" slot="0x1f" function="0x2"/>
</controller>
<controller type="virtio-serial" index="0">
<address type="pci" domain="0x0000" bus="0x03" slot="0x00" function="0x0"/>
</controller>
<interface type="network">
<mac address="52:54:00:81:ff:44"/>
<source network="default"/>
<model type="virtio"/>
<address type="pci" domain="0x0000" bus="0x01" slot="0x00" function="0x0"/>
</interface>
<serial type="pty">
<target type="isa-serial" port="0">
<model name="isa-serial"/>
</target>
</serial>
<console type="pty">
<target type="serial" port="0"/>
</console>
<channel type="spicevmc">
<target type="virtio" name="com.redhat.spice.0"/>
<address type="virtio-serial" controller="0" bus="0" port="1"/>
</channel>
<channel type='unix'>
<source mode='bind'/>
<target type='virtio' name='org.qemu.guest_agent.0'/>
<address type='virtio-serial' controller='0' bus='0' port='2'/>
</channel>
<input type="tablet" bus="usb">
<address type="usb" bus="0" port="1"/>
</input>
<input type="mouse" bus="ps2"/>
<input type="keyboard" bus="ps2"/>
<tpm model="tpm-crb">
<backend type="emulator" version="2.0"/>
</tpm>
<graphics type="spice" autoport="yes">
<listen type="address"/>
<image compression="off"/>
</graphics>
<sound model="ich9">
<address type="pci" domain="0x0000" bus="0x00" slot="0x1b" function="0x0"/>
</sound>
<audio id="1" type="spice"/>
<video>
<model type="qxl" ram="65536" vram="65536" vgamem="16384" heads="1" primary="yes"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x01" function="0x0"/>
</video>
<hostdev mode="subsystem" type="usb" managed="yes">
<source>
<vendor id="0x0bda"/>
<product id="0x554e"/>
</source>
<address type="usb" bus="0" port="4"/>
</hostdev>
<redirdev bus="usb" type="spicevmc">
<address type="usb" bus="0" port="2"/>
</redirdev>
<watchdog model="itco" action="reset"/>
<memballoon model="virtio">
<address type="pci" domain="0x0000" bus="0x05" slot="0x00" function="0x0"/>
</memballoon>
</devices>
</domain>
Install Windows as you would on any other machine.
Once you get to the point of selecting the location for installation, you will see there are no disks available. This is because the VirtIO driver
needs to be specified manually.
- Select
Load driver
.
- The installer will then ask you to specify where the driver is located. Select the drive the
VirtIO
driver.ISO
is mounted on.
- Choose the appropriate driver for the operating system you've selected, which is likely either the
w10
orw11
drivers.
- The virtual hard disk should now be visible and available for selection.
The next hurdle will be bypassing the network selection screen. As the VirtIO
drivers for networking have not yet been loaded, the virtual machine will not be able to be connected to the internet.
- For Windows 11: When prompted to select your country or region, press "Shift + F10" to open the command prompt. Enter
OOBE\BYPASSNRO
and press Enter. The system will restart, allowing you to select "I don't have internet" later on. It is crucial to run this command as soon as possible, as doing so later in the installation process will not work, and you may be required to create a Microsoft account despite not having an internet connection.
- For Windows 10: Simply click "I don't have internet".
Following the above, choose to "Continue with limited setup".
Open File Explorer
and navigate to the drive where the VirtIO
driver .ISO
is mounted. Run virtio-win-gt-x64.exe
to launch the VirtIO
driver installer.
Leave everything as default and click Next
through the installer. This will install all required device drivers as well as the 'Memory Ballooning' service.
Next, install the QEMU Guest Agent
within Windows. This agent allows the GNU/Linux host to request a graceful shutdown of the Windows system. To do this, either run virtio-win-guest-tools.exe
or guest-agent\qemu-ga-x86_64.msi
. You can confirm the guest agent was successfully installed by running Get-Service QEMU-GA
within a PowerShell window. The output should resemble:
Status Name DisplayName
------ ---- -----------
Running QEMU-GA QEMU Guest Agent
You can then test whether the host GNU/Linux system can communicate with Windows via QEMU Guest Agent
by running virsh qemu-agent-command RDPWindows '{"execute":"guest-info"}'
. The output should resemble:
{"return":{"version":"107.0.1","supported_commands":[{"enabled":true,"name":"guest-get-cpustats","success-response":true},{"enabled":true,"name":"guest-get-diskstats","success-response":true},{"enabled":true,"name":"guest-get-devices","success-response":true},{"enabled":true,"name":"guest-get-osinfo","success-response":true},{"enabled":true,"name":"guest-get-timezone","success-response":true},{"enabled":true,"name":"guest-get-users","success-response":true},{"enabled":true,"name":"guest-get-host-name","success-response":true},{"enabled":true,"name":"guest-exec","success-response":true},{"enabled":true,"name":"guest-exec-status","success-response":true},{"enabled":false,"name":"guest-get-memory-block-info","success-response":true},{"enabled":false,"name":"guest-set-memory-blocks","success-response":true},{"enabled":false,"name":"guest-get-memory-blocks","success-response":true},{"enabled":true,"name":"guest-set-user-password","success-response":true},{"enabled":true,"name":"guest-get-fsinfo","success-response":true},{"enabled":true,"name":"guest-get-disks","success-response":true},{"enabled":false,"name":"guest-set-vcpus","success-response":true},{"enabled":true,"name":"guest-get-vcpus","success-response":true},{"enabled":true,"name":"guest-network-get-interfaces","success-response":true},{"enabled":false,"name":"guest-suspend-hybrid","success-response":false},{"enabled":true,"name":"guest-suspend-ram","success-response":false},{"enabled":true,"name":"guest-suspend-disk","success-response":false},{"enabled":true,"name":"guest-fstrim","success-response":true},{"enabled":true,"name":"guest-fsfreeze-thaw","success-response":true},{"enabled":true,"name":"guest-fsfreeze-freeze-list","success-response":true},{"enabled":true,"name":"guest-fsfreeze-freeze","success-response":true},{"enabled":true,"name":"guest-fsfreeze-status","success-response":true},{"enabled":true,"name":"guest-file-flush","success-response":true},{"enabled":true,"name":"guest-file-seek","success-response":true},{"enabled":true,"name":"guest-file-write","success-response":true},{"enabled":true,"name":"guest-file-read","success-response":true},{"enabled":true,"name":"guest-file-close","success-response":true},{"enabled":true,"name":"guest-file-open","success-response":true},{"enabled":true,"name":"guest-shutdown","success-response":false},{"enabled":true,"name":"guest-info","success-response":true},{"enabled":true,"name":"guest-set-time","success-response":true},{"enabled":true,"name":"guest-get-time","success-response":true},{"enabled":true,"name":"guest-ping","success-response":true},{"enabled":true,"name":"guest-sync","success-response":true},{"enabled":true,"name":"guest-sync-delimited","success-response":true}]}}
Next, you will need to make some registry changes to enable RDP Applications to run on the system. Start by downloading the RDPApps.reg file, right-clicking on the Raw
button, and clicking on Save target as
.
Once you have downloaded the registry file, right-click on it, and choose Merge
.
Rename the Windows virtual machine so that WinApps can locate it by navigating to the start menu and typing About
to bring up the About your PC
settings.
Scroll down and click on Rename this PC
.
Rename the PC to RDPWindows
, but DO NOT restart the virtual machine.
Scroll down to Remote Desktop
, and enable Enable Remote Desktop
.
At this point, you will need to restart the Windows virtual machine.
When connecting to Windows through FreeRDP, your home folder will be shared automatically. However, this sharing setup does not apply when using Windows via virt-manager. To configure a fallback shared folder, follow these steps:
-
Navigate to "Virtual Hardware Details", then "Memory" and then check the box for "Enable shared memory".
-
Add filesystem hardware by going to "Virtual Hardware Details" and selecting "Add Hardware" followed by "Filesystem". Choose
virtiofs
as the driver, enter the path to the shared folder, and provide a name for the shared folder in the target path (e.g., "Windows Shared Folder"). -
Install
WinFSP
on Windows. -
Enable and start a 'VirtIO Filesystem' service within Windows by running the following commands within a PowerShell prompt.
sc.exe create VirtioFsSvc binpath= "C:\Program Files\Virtio-Win\VioFS\virtiofs.exe" start=auto depend="WinFsp.Launcher/VirtioFsDrv" DisplayName="Virtio Filesystem Service" sc.exe start VirtioFsSvc
-
Reboot Windows.
-
Identify the Windows MAC address.
virsh dumpxml "RDPWindows" | grep "mac address"
-
Edit the virtual network configuration.
-
Identify the correct network name.
virsh net-list # Will likely return "default"
-
Edit the configuration file.
virsh net-edit "default" # Replace "default" with the appropriate network name if different
-
Update the
<dhcp>
section in the configuration file using the MAC address you obtained earlier. In the below example, "RDPWindows" has MAC address "df:87:4c:75:e5:fb" and is assigned the static IP address "192.168.122.2".<dhcp> <range start="192.168.122.2" end="192.168.122.254"/> <host mac="df:87:4c:75:e5:fb" name="RDPWindows" ip="192.168.122.2"/> <host mac="53:45:6b:de:a0:7b" name="Debian" ip="192.168.122.3"/> <host mac="7d:62:4f:59:ef:f5" name="FreeBSD" ip="192.168.122.4"/> </dhcp>
-
Restart the virtual network.
virsh net-destroy "default" # Replace with the correct name on your system virsh net-start "default" # Replace with the correct name on your system
-
Reboot Windows.
-
You may now proceed to install other applications like 'Microsoft 365', 'Adobe Creative Cloud' or any other applications you would like to use through WinApps.
Note
You may also wish to install Spice Guest Tools inside the virtual machine, which enables features like auto-desktop resize and cut-and-paste when accessing the virtual machine through virt-manager
. Since WinApps uses RDP, however, this is unnecessary if you don't plan to access the virtual machine via virt-manager
.
Important
Ensure WAFLAVOR
is set to "libvirt"
in your ~/.config/winapps/winapps.conf
to prevent WinApps looking for a Docker
installation instead.
Finally, restart the virtual machine, but DO NOT log in. Close the virtual machine viewer and proceed to run the WinApps installation.
bash <(curl https://raw.githubusercontent.com/winapps-org/winapps/main/setup.sh)