diff --git a/src/finn/transformation/fpgadataflow/convert_to_hw_layers.py b/src/finn/transformation/fpgadataflow/convert_to_hw_layers.py index e2f638ed62..897d714bf8 100644 --- a/src/finn/transformation/fpgadataflow/convert_to_hw_layers.py +++ b/src/finn/transformation/fpgadataflow/convert_to_hw_layers.py @@ -1644,7 +1644,6 @@ def apply(self, model): [mt_output], domain="finn.custom_op.fpgadataflow", backend="fpgadataflow", - resType="lut", PE=pe, Dim=[mm_in_shape[1], mm_in_shape[2]], Channels=channels, @@ -1673,7 +1672,6 @@ def apply(self, model): [mm_output], domain="finn.custom_op.fpgadataflow", backend="fpgadataflow", - resType="lut", PE=pe, Dim=[mm_in_shape[1], mm_in_shape[2]], Channels=channels, diff --git a/tests/fpgadataflow/test_depthwise_convolution.py b/tests/fpgadataflow/test_depthwise_convolution.py index bde5e918e3..24bc2f3afe 100644 --- a/tests/fpgadataflow/test_depthwise_convolution.py +++ b/tests/fpgadataflow/test_depthwise_convolution.py @@ -190,7 +190,7 @@ def test_depthwise_conv_hw_cppsim(act, pe, k, stride, padding): if n.op_type.startswith("ConvolutionInputGenerator"): convinputgen_node = getCustomOp(n) convinputgen_node.set_nodeattr("SIMD", pe) - elif n.op_type.startswith("VectorVectorActivation"): + elif n.op_type.startswith("VVAU"): vvau_node = getCustomOp(n) vvau_node.set_nodeattr("PE", pe) new_model = new_model.transform(SetExecMode("cppsim")) @@ -235,7 +235,7 @@ def test_depthwise_conv_hw_rtlsim(act, pe, k, stride, padding): if n.op_type.startswith("ConvolutionInputGenerator"): convinputgen_node = getCustomOp(n) convinputgen_node.set_nodeattr("SIMD", pe) - elif n.op_type.startswith("VectorVectorActivation"): + elif n.op_type.startswith("VVAU"): vvau_node = getCustomOp(n) vvau_node.set_nodeattr("PE", pe)