From c94f07da23e0d36469592ca490176b605854f9ba Mon Sep 17 00:00:00 2001 From: eitanporat Date: Sun, 24 Sep 2023 22:07:14 +0300 Subject: [PATCH] add kahn kalai --- .DS_Store | Bin 10244 -> 10244 bytes content/.DS_Store | Bin 6148 -> 6148 bytes content/posts/kahn kalai.md | 64 ++++++++++++++++++++++++++++++++++++ themes/.DS_Store | Bin 6148 -> 6148 bytes 4 files changed, 64 insertions(+) create mode 100644 content/posts/kahn kalai.md diff --git a/.DS_Store b/.DS_Store index a41de92d39826f8fac82ff1200c93e53cd0621cc..dfe87f5473542e2541407846e14d2be95b30b4d9 100644 GIT binary patch delta 658 zcmZn(XbG6$&*-!pEDU-K=?s|+CAs-7E=f80NkB1lMOl2rxD9+7CSPD_I`MS_dgl>k(aU$}}oLOR%8${$d3O>9) zRtXG2AV*~KE)gy^h`{7iB1()KCchO47KPagau*9j3ec(&hQ!H@Lc)`SMQ3urWGCMg zRb=8wpZrHOhtXhirkE{4W~$gl1jk?eE`lR1aTLi@7bN7EW-OTeK_ZpO$zfw+5bI`k Rg#NdOw`(MtdT delta 321 zcmZn(XbG6$&uF$WU^hRb*<>C8$@s++o-;5ourTN`q%&kPl;q~SxFqG|CjrGc4jg)! zm3#e&BdUA~UipFy!{Frn+ybB;28L}57$z48N^I5j z%?-jc8BKE1ku-7KUk}vE&XCNI&ydGZ!jK9gk)3scLwmyRYm+lX71*H6K2aq`fyo<1 zgC|Rht(p8ljE{-=+2jvmIg{TBvQJJHH=n#&{J`W%632kF=;SuZ`IGIW_?Y61Ci_XH ZGC6+On7Dy$GrPhsmdQs&?eUv14*=4hY!Cnd diff --git a/content/.DS_Store b/content/.DS_Store index ebcfaebab000241afda2e9a5f07b8f3dd8f40991..50cead65299393ab769ae443270062c91e191e10 100644 GIT binary patch delta 47 wcmZoMXffEp#mvm96F!-jS&BVlLq)Bpeg delta 47 wcmZoMXffEp#mvlceD!2rW-0cKe\frac{(1+\varepsilon)\ln{n}}{n}$, then $G\sim G(n,p)$ almost surely is **connected**. In this case, $\Theta(\frac{\ln{n}}{n})$ is a threshold for the monotone property of connectivity, formally $p_{c}(\mathcal{G})$ the threshold of a monotone property is the probability $p_{c}$ for which $\Pr_{G\sim G(n,p_{c})}(G \in \mathcal{G})=\frac{1}{2}.$ + +## Threshold for Triangles in a random graph + +### Lower Bound via Expectation +Consider the monotone property: $G$ contains a triangles, that is an unordered triples $\lbrace i, j, k \rbrace$ such that $\lbrace i, j \rbrace$, $\lbrace j, k \rbrace$, and $\lbrace k, i \rbrace$ are edges in $G$. +We wish to compute $$\Pr_{G\sim G(n,p)}(G \text { contains a triangle}).$$ Let $N_\triangle(G)$ be the number of triangles in $G$. Then, $$\Pr_{G\sim G(n,p)}(G \text { contains a triangle}) = \Pr_{G\sim G(n,p)}(N_\triangle(G) \geq 1).$$ We can rewrite the latter term using the expectation instead $$\begin{aligned}\Pr_{G\sim G(n,p)}(N_\triangle(G) \geq 1) &= \mathbb{E}[1_{N_\triangle(G) \geq 1}] \\\\ +&\leq \mathbb{E}[N_\triangle(G) 1_{N_\triangle(G) \geq 1}]\\\\ & =\mathbb{E}[N_\triangle(G)]\end{aligned} $$ Using linearity of expectation it is easy to compute $\mathbb{E}[N_\triangle(G)]$. $$N_\triangle(G)=\sum_{i 0)$ using $\mathbb{E}[X]$ (the first moment) and $\mathbb{E}[X^{2}].$ Intuitively, if $X$ has a high mean and a low variance, then it is positive with high probability. $$\begin{aligned}\mathbb{E}[X] &= \mathbb{E}[X 1_{X>0}] \leq \sqrt{\mathbb{E}[X^{2}]}\sqrt{\Pr(X>0)}\end{aligned}$$ Thus $$\Pr(X>0) \geq \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]}.$$ For $X=N_\triangle(G)$, $$\begin{aligned}\mathbb{E}[N_\triangle(G)^{2}] &= \mathbb{E}\left[\left(\sum_{abc}{X_{abc}}\right)^2\right]\\\\ &= \sum_{abc}\sum_{abc}{\mathbb{E}[X_{abc}X_{def}]}.\end{aligned}$$ +* If the triangle $abc$ and the triangle $def$ don't share any edges $X_{abc}$ and $X_{def}$ are independent random variable, then $$\mathbb{E}[X_{abc} X_{def}] = \mathbb{E}[X_{abc}]\mathbb{E}[X_{def}] = p^6.$$ There are $\begin{pmatrix}n \\\\ 6\end{pmatrix}\begin{pmatrix}6 \\\\ 3\end{pmatrix} \sim \frac{1}{36} n^{6}$ such terms. +* If $ijk$ and $abc$ share one edge, then $$\mathbb{E}[X_{ijk} X_{abc}] = p^4.$$ There are $\begin{pmatrix}n \\\\ 4\end{pmatrix}\begin{pmatrix}4 \\\\ 3\end{pmatrix} \sim \frac{1}{6}n^{4}$ such terms. +* If $ijk$ are $abc$ share two edges (in other words, are identical), then $$\mathbb{E}[X_{ijk}X_{abc}] = p^{3}.$$ There are $\sim \frac{1}{6} n^3$ such terms. + +Thus, $$\Pr(N_\triangle(G)\geq 1) \geq \frac{\frac{1}{36}(np)^6}{\frac{1}{36}(np)^6 + \frac{1}{6}(np)^4 + \frac{1}{6}(np)^3}$$ for some constant $C$ and $p=Cn^{-1}$, $$\Pr(N_\triangle(G)\geq 1)\geq \frac{1}{2},$$ hence $p_c = O(n^{-1}).$ + +### $n^{-1}$ is the threshold +In this example, the threshold we using the expectation bound is tight (up to a constant). It is not difficult to show that the expectation bound is tight for the property "$G$ contains $H$" where $H$ is some constant-size graph. We could try to use this method for other monotone properties such as connectivity. For connectivity, the expectation bound gives us $p = n^{-1}$ which is not tight the real threshold is $n^{-1}\ln n$. **Kahn and Kalai conjectured that the threshold from the expectation bound is tight up to a logarithmic constant**. + +## Kahn-Kalai Conjecture \ No newline at end of file diff --git a/themes/.DS_Store b/themes/.DS_Store index 002cea7b9c49d933df2fc04559dbed3f71b882bf..8c880261756baa5dcf69ab017b8301000287c450 100644 GIT binary patch delta 151 zcmZoMXfc@J&&atkU^gQp=VTrxIi|(iChIWCu%8c;5Kv4wI@zB|Rs+g*WME)mV@PDk z1LJIl)PfAd;N<+=0-!hpgUJDg$q$%BI8%y~bCUA&a~MIq$t#%nnC?6SGQ}pJW8z}x fY!e5YdY?%Vi7h%=hMA8sVY4CgewNMb9Dn%%x(6&w delta 150 zcmZoMXfc@J&&aVcU^gQp$7CKRIi}`KlXaM6*sZ2tty*&J$Yg&eSq&)Lk%57MjUkaC z4~(-JQVTK+gOl@f3xMJb3?>s8CU0a?VmedAjxrwr