forked from alex-robinson/ncio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pres_temp_4D_wr_compare.f90
263 lines (203 loc) · 9.5 KB
/
pres_temp_4D_wr_compare.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
! This program compares native netcdf writing speeds to ncio
! based on the example program provided in the netCDF tutorial:
! pres_temp_4D_wr.f90
! *Provide the number of writing loops as a command line argument
! This is an example program which writes some 4D pressure and
! temperatures. It is intended to illustrate the use of the netCDF
! fortran 90 API.
! This program is part of the netCDF tutorial:
! http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial
program pres_temp_4D_wr
use netcdf
use ncio
implicit none
! This is the name of the data file we will create.
character (len = *), parameter :: FILE_NAME = "timing/pres_temp_4D.nc"
character (len = *), parameter :: FILE_NAME1 = "timing/pres_temp_4D_ncio.nc"
integer :: ncid
! We are writing 4D data, a 2 x 6 x 12 lvl-lat-lon grid, with 2
! timesteps of data.
integer, parameter :: NDIMS = 4, NRECS = 2
integer, parameter :: NLVLS = 2, NLATS = 6, NLONS = 12
character (len = *), parameter :: LVL_NAME = "level"
character (len = *), parameter :: LAT_NAME = "latitude"
character (len = *), parameter :: LON_NAME = "longitude"
character (len = *), parameter :: REC_NAME = "time"
integer :: lvl_dimid, lon_dimid, lat_dimid, rec_dimid
! The start and count arrays will tell the netCDF library where to
! write our data.
integer :: start(NDIMS), count(NDIMS)
! These program variables hold the latitudes and longitudes.
real :: lats(NLATS), lons(NLONS)
integer :: lon_varid, lat_varid
! We will create two netCDF variables, one each for temperature and
! pressure fields.
character (len = *), parameter :: PRES_NAME="pressure"
character (len = *), parameter :: TEMP_NAME="temperature"
integer :: pres_varid, temp_varid
integer :: dimids(NDIMS)
! We recommend that each variable carry a "units" attribute.
character (len = *), parameter :: UNITS = "units"
character (len = *), parameter :: PRES_UNITS = "hPa"
character (len = *), parameter :: TEMP_UNITS = "celsius"
character (len = *), parameter :: LAT_UNITS = "degrees_north"
character (len = *), parameter :: LON_UNITS = "degrees_east"
! Program variables to hold the data we will write out. We will only
! need enough space to hold one timestep of data; one record.
real :: pres_out(NLONS, NLATS, NLVLS)
real :: temp_out(NLONS, NLATS, NLVLS)
real, parameter :: SAMPLE_PRESSURE = 900.0
real, parameter :: SAMPLE_TEMP = 9.0
! Use these to construct some latitude and longitude data for this
! example.
real, parameter :: START_LAT = 25.0, START_LON = -125.0
! Loop indices
integer :: lvl, lat, lon, rec, i
! ## NCIO added code to handle comparison ##
! Arguments
integer :: nargs
character (len=20) :: arg
character (len=20) :: write_netcdf
real (8) :: dtime1, dtime2
real (8) :: time_netcdf, time_ncio, time_ncio2
integer :: q, nloops
nloops = 1
nargs = command_argument_count()
if (nargs .gt. 0) then
call get_command_argument(nargs, arg)
read(arg,*) nloops
end if
write(*,*) "Testing ncio writing speeds, nloops = ",nloops
! Create pretend data. If this wasn't an example program, we would
! have some real data to write, for example, model output.
do lat = 1, NLATS
lats(lat) = START_LAT + (lat - 1) * 5.0
end do
do lon = 1, NLONS
lons(lon) = START_LON + (lon - 1) * 5.0
end do
i = 0
do lvl = 1, NLVLS
do lat = 1, NLATS
do lon = 1, NLONS
pres_out(lon, lat, lvl) = SAMPLE_PRESSURE + i
temp_out(lon, lat, lvl) = SAMPLE_TEMP + i
i = i + 1
end do
end do
end do
! ## SECTION 1: native netcdf ##
call cpu_time(dtime1) ! get current time in seconds
! Create the file.
call check( nf90_create(FILE_NAME, nf90_clobber, ncid) )
! Define the dimensions. The record dimension is defined to have
! unlimited length - it can grow as needed. In this example it is
! the time dimension.
call check( nf90_def_dim(ncid, LVL_NAME, NLVLS, lvl_dimid) )
call check( nf90_def_dim(ncid, LAT_NAME, NLATS, lat_dimid) )
call check( nf90_def_dim(ncid, LON_NAME, NLONS, lon_dimid) )
call check( nf90_def_dim(ncid, REC_NAME, NF90_UNLIMITED, rec_dimid) )
! Define the coordinate variables. We will only define coordinate
! variables for lat and lon. Ordinarily we would need to provide
! an array of dimension IDs for each variable's dimensions, but
! since coordinate variables only have one dimension, we can
! simply provide the address of that dimension ID (lat_dimid) and
! similarly for (lon_dimid).
call check( nf90_def_var(ncid, LAT_NAME, NF90_REAL, lat_dimid, lat_varid) )
call check( nf90_def_var(ncid, LON_NAME, NF90_REAL, lon_dimid, lon_varid) )
! Assign units attributes to coordinate variables.
call check( nf90_put_att(ncid, lat_varid, UNITS, LAT_UNITS) )
call check( nf90_put_att(ncid, lon_varid, UNITS, LON_UNITS) )
! The dimids array is used to pass the dimids of the dimensions of
! the netCDF variables. Both of the netCDF variables we are creating
! share the same four dimensions. In Fortran, the unlimited
! dimension must come last on the list of dimids.
dimids = (/ lon_dimid, lat_dimid, lvl_dimid, rec_dimid /)
! Define the netCDF variables for the pressure and temperature data.
call check( nf90_def_var(ncid, PRES_NAME, NF90_REAL, dimids, pres_varid) )
call check( nf90_def_var(ncid, TEMP_NAME, NF90_REAL, dimids, temp_varid) )
! Assign units attributes to the netCDF variables.
call check( nf90_put_att(ncid, pres_varid, UNITS, PRES_UNITS) )
call check( nf90_put_att(ncid, temp_varid, UNITS, TEMP_UNITS) )
! End define mode.
call check( nf90_enddef(ncid) )
! Write the coordinate variable data. This will put the latitudes
! and longitudes of our data grid into the netCDF file.
call check( nf90_put_var(ncid, lat_varid, lats) )
call check( nf90_put_var(ncid, lon_varid, lons) )
! These settings tell netcdf to write one timestep of data. (The
! setting of start(4) inside the loop below tells netCDF which
! timestep to write.)
count = (/ NLONS, NLATS, NLVLS, 1 /)
start = (/ 1, 1, 1, 1 /)
do q = 1, nloops
! Write the pretend data. This will write our surface pressure and
! surface temperature data. The arrays only hold one timestep worth
! of data. We will just rewrite the same data for each timestep. In
! a real :: application, the data would change between timesteps.
do rec = 1, NRECS
start(4) = rec
call check( nf90_put_var(ncid, pres_varid, pres_out, start = start, &
count = count) )
call check( nf90_put_var(ncid, temp_varid, temp_out, start = start, &
count = count) )
end do
end do
! Close the file. This causes netCDF to flush all buffers and make
! sure your data are really written to disk.
call check( nf90_close(ncid) )
call cpu_time(dtime2) ! get current time in seconds
time_netcdf = dtime2 - dtime1
print *,"*** SUCCESS writing example file ", FILE_NAME, "!"
print *,"25 lines of code."
! ## SECTION 2: ncio ##
call cpu_time(dtime1) ! get current time in seconds
call nc_create(FILE_NAME1)
call nc_write_dim(FILE_NAME1,LAT_NAME,x=lats,units=LAT_UNITS)
call nc_write_dim(FILE_NAME1,LON_NAME,x=lons,units=LON_UNITS)
call nc_write_dim(FILE_NAME1,LVL_NAME,x=1.0,nx=NLVLS)
call nc_write_dim(FILE_NAME1,REC_NAME,x=1.0,nx=2,unlimited=.TRUE.)
do q = 1, nloops
do rec = 1, NRECS
call nc_write(FILE_NAME1,PRES_NAME,pres_out,units=PRES_UNITS,dim1="longitude",dim2="latitude",&
dim3="level",dim4="time",start=[1,1,1,rec],count=[NLONS,NLATS,NLVLS,1])
call nc_write(FILE_NAME1,TEMP_NAME,temp_out,units=TEMP_UNITS,dim1="longitude",dim2="latitude",&
dim3="level",dim4="time",start=[1,1,1,rec],count=[NLONS,NLATS,NLVLS,1])
end do
end do
call cpu_time(dtime2) ! get current time in seconds
time_ncio = dtime2 - dtime1
print *,"*** SUCCESS writing example file ", FILE_NAME1, "! [NCIO]"
print *,"7 lines of code."
! ## SECTION 3: ncio using ncid option ##
call cpu_time(dtime1) ! get current time in seconds
call nc_create(FILE_NAME1)
call nc_write_dim(FILE_NAME1,LAT_NAME,x=lats,units=LAT_UNITS)
call nc_write_dim(FILE_NAME1,LON_NAME,x=lons,units=LON_UNITS)
call nc_write_dim(FILE_NAME1,LVL_NAME,x=1.0,nx=NLVLS)
call nc_write_dim(FILE_NAME1,REC_NAME,x=1.0,nx=2,unlimited=.TRUE.)
call nc_open(FILE_NAME1,ncid)
do q = 1, nloops
do rec = 1, NRECS
call nc_write(FILE_NAME1,PRES_NAME,pres_out,ncid=ncid,units=PRES_UNITS,dim1="longitude",dim2="latitude",&
dim3="level",dim4="time",start=[1,1,1,rec],count=[NLONS,NLATS,NLVLS,1])
call nc_write(FILE_NAME1,TEMP_NAME,temp_out,ncid=ncid,units=TEMP_UNITS,dim1="longitude",dim2="latitude",&
dim3="level",dim4="time",start=[1,1,1,rec],count=[NLONS,NLATS,NLVLS,1])
end do
end do
call nc_close(ncid)
call cpu_time(dtime2) ! get current time in seconds
time_ncio2 = dtime2 - dtime1
print *,"*** SUCCESS writing example file ", FILE_NAME1, "! [NCIO-ncid]"
print *,"9 lines of code."
write(*,"(a25,a10,3a18)") "","nloops","native","ncio","ncio_ncid"
write(*,"(a25,i10,3f18.4)") "Calculation times (s): ",nloops, time_netcdf, time_ncio, time_ncio2
contains
subroutine check(status)
integer, intent ( in) :: status
if(status /= nf90_noerr) then
print *, trim(nf90_strerror(status))
stop "Stopped"
end if
end subroutine check
end program pres_temp_4D_wr