From c4a1aad3122b506c0478eaf788560d9ff3b25c1d Mon Sep 17 00:00:00 2001 From: Dmitry Kalinkin Date: Thu, 17 Oct 2024 23:42:29 -0400 Subject: [PATCH] Add ML training for EcalEndcapNClusterParticleIDs --- .gitlab-ci.yml | 4 +- Snakefile | 1 + benchmarks/calo_pid/Snakefile | 115 +++++++++ benchmarks/calo_pid/calo_pid.org | 364 +++++++++++++++++++++++++++ benchmarks/calo_pid/config.yml | 45 ++++ benchmarks/calo_pid/requirements.txt | 6 + 6 files changed, 534 insertions(+), 1 deletion(-) create mode 100644 benchmarks/calo_pid/Snakefile create mode 100644 benchmarks/calo_pid/calo_pid.org create mode 100644 benchmarks/calo_pid/config.yml create mode 100644 benchmarks/calo_pid/requirements.txt diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index e313531b..eb6563ff 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -127,6 +127,7 @@ get_data: include: - local: 'benchmarks/backgrounds/config.yml' - local: 'benchmarks/backwards_ecal/config.yml' + - local: 'benchmarks/calo_pid/config.yml' - local: 'benchmarks/ecal_gaps/config.yml' - local: 'benchmarks/tracking_detectors/config.yml' - local: 'benchmarks/tracking_performances/config.yml' @@ -159,8 +160,9 @@ deploy_results: - "collect_results:backwards_ecal" - "collect_results:barrel_ecal" - "collect_results:barrel_hcal" - - "collect_results:lfhcal" + - "collect_results:calo_pid" - "collect_results:ecal_gaps" + - "collect_results:lfhcal" - "collect_results:material_scan" - "collect_results:pid" - "collect_results:tracking_performance" diff --git a/Snakefile b/Snakefile index 23ae5169..724b09e9 100644 --- a/Snakefile +++ b/Snakefile @@ -3,6 +3,7 @@ configfile: "snakemake.yml" include: "benchmarks/backgrounds/Snakefile" include: "benchmarks/backwards_ecal/Snakefile" include: "benchmarks/barrel_ecal/Snakefile" +include: "benchmarks/calo_pid/Snakefile" include: "benchmarks/ecal_gaps/Snakefile" include: "benchmarks/material_scan/Snakefile" include: "benchmarks/tracking_performances/Snakefile" diff --git a/benchmarks/calo_pid/Snakefile b/benchmarks/calo_pid/Snakefile new file mode 100644 index 00000000..dd6781ed --- /dev/null +++ b/benchmarks/calo_pid/Snakefile @@ -0,0 +1,115 @@ +import functools +import json +import ctypes.util +import warnings +from snakemake.logging import logger + +@functools.cache +def get_spack_package_hash(package_name): + try: + ver_info = json.loads(subprocess.check_output(["spack", "find", "--json", package_name])) + return ver_info[0]["package_hash"] + except FileNotFoundError as e: + logger.warning("Spack is not installed") + return "" + except subprocess.CalledProcessError as e: + print(e) + return "" + +def format_energy_for_dd4hep(s): + return s.rstrip("kMGeV") + "*" + s.lstrip("0123456789") + +rule calo_pid_sim: + input: + warmup="warmup/{DETECTOR_CONFIG}.edm4hep.root", + geometry_lib=os.environ["DETECTOR_PATH"] + "/../../lib/" + ctypes.util.find_library("epic"), + output: + "sim_output/calo_pid/{DETECTOR_CONFIG}/{PARTICLE}/{ENERGY_MIN}to{ENERGY_MAX}/{THETA_MIN}to{THETA_MAX}deg/{PARTICLE}_{ENERGY}_{THETA_MIN}to{THETA_MAX}deg.{INDEX}.edm4hep.root", + log: + "sim_output/calo_pid/{DETECTOR_CONFIG}/{PARTICLE}/{ENERGY_MIN}to{ENERGY_MAX}/{THETA_MIN}to{THETA_MAX}deg/{PARTICLE}_{ENERGY}_{THETA_MIN}to{THETA_MAX}deg.{INDEX}.edm4hep.root.log", + wildcard_constraints: + PARTICLE="(e-|pi-)", + ENERGY_MIN="[0-9]+[kMG]eV", + ENERGY_MAX="[0-9]+[kMG]eV", + THETA_MIN="[0-9]+", + THETA_MAX="[0-9]+", + INDEX="\d{4}", + params: + N_EVENTS=1000, + SEED=lambda wildcards: "1" + wildcards.INDEX, + DETECTOR_PATH=os.environ["DETECTOR_PATH"], + DETECTOR_CONFIG=lambda wildcards: wildcards.DETECTOR_CONFIG, + ENERGY_MIN=lambda wildcards: format_energy_for_dd4hep(wildcards.ENERGY_MIN), + ENERGY_MAX=lambda wildcards: format_energy_for_dd4hep(wildcards.ENERGY_MAX), + DD4HEP_HASH=get_spack_package_hash("dd4hep"), + NPSIM_HASH=get_spack_package_hash("npsim"), + cache: True + shell: + """ +set -m # monitor mode to prevent lingering processes +exec ddsim \ + --runType batch \ + --enableGun \ + --gun.momentumMin "{params.ENERGY_MIN}" \ + --gun.momentumMax "{params.ENERGY_MAX}" \ + --gun.thetaMin "{wildcards.THETA_MIN}*deg" \ + --gun.thetaMax "{wildcards.THETA_MAX}*deg" \ + --gun.particle {wildcards.PARTICLE} \ + --gun.distribution eta \ + --random.seed {params.SEED} \ + --filter.tracker edep0 \ + -v WARNING \ + --numberOfEvents {params.N_EVENTS} \ + --compactFile {params.DETECTOR_PATH}/{params.DETECTOR_CONFIG}.xml \ + --outputFile {output} +""" + + +rule calo_pid_recon: + input: + "sim_output/calo_pid/{DETECTOR_CONFIG}/{PARTICLE}/{ENERGY}/{PHASE_SPACE}/{PARTICLE}_{ENERGY}_{PHASE_SPACE}.{INDEX}.edm4hep.root", + output: + "sim_output/calo_pid/{DETECTOR_CONFIG}/{PARTICLE}/{ENERGY}/{PHASE_SPACE}/{PARTICLE}_{ENERGY}_{PHASE_SPACE}.{INDEX}.eicrecon.tree.edm4eic.root", + log: + "sim_output/calo_pid/{DETECTOR_CONFIG}/{PARTICLE}/{ENERGY}/{PHASE_SPACE}/{PARTICLE}_{ENERGY}_{PHASE_SPACE}.{INDEX}.eicrecon.tree.edm4eic.root.log", + wildcard_constraints: + INDEX="\d{4}", + shell: """ +set -m # monitor mode to prevent lingering processes +exec env DETECTOR_CONFIG={wildcards.DETECTOR_CONFIG} \ + eicrecon {input} -Ppodio:output_file={output} \ + -Ppodio:output_collections=MCParticles,EcalEndcapNRecHits,EcalEndcapNClusters,EcalEndcapNParticleIDInput_features,EcalEndcapNParticleIDTarget +""" + + +rule calo_pid: + input: + electrons=expand( + "sim_output/calo_pid/{{DETECTOR_CONFIG}}/{PARTICLE}/{ENERGY}/{PHASE_SPACE}/{PARTICLE}_{ENERGY}_{PHASE_SPACE}.{INDEX:04d}.eicrecon.tree.edm4eic.root", + PARTICLE=["e-"], + ENERGY=["100MeVto20GeV"], + PHASE_SPACE=["130to177deg"], + INDEX=range(100), + ), + pions=expand( + "sim_output/calo_pid/{{DETECTOR_CONFIG}}/{PARTICLE}/{ENERGY}/{PHASE_SPACE}/{PARTICLE}_{ENERGY}_{PHASE_SPACE}.{INDEX:04d}.eicrecon.tree.edm4eic.root", + PARTICLE=["pi-"], + ENERGY=["100MeVto20GeV"], + PHASE_SPACE=["130to177deg"], + INDEX=range(100), + ), + matplotlibrc=".matplotlibrc", + script="benchmarks/calo_pid/calo_pid.py", + output: + directory("results/{DETECTOR_CONFIG}/calo_pid") + shell: + """ +env \ +MATPLOTLIBRC={input.matplotlibrc} \ +DETECTOR_CONFIG={wildcards.DETECTOR_CONFIG} \ +PLOT_TITLE={wildcards.DETECTOR_CONFIG} \ +INPUT_ELECTRONS="{input.electrons}" \ +INPUT_PIONS="{input.pions}" \ +OUTPUT_DIR={output} \ +python {input.script} +""" diff --git a/benchmarks/calo_pid/calo_pid.org b/benchmarks/calo_pid/calo_pid.org new file mode 100644 index 00000000..a46aec02 --- /dev/null +++ b/benchmarks/calo_pid/calo_pid.org @@ -0,0 +1,364 @@ +#+PROPERTY: header-args:jupyter-python :session /jpy:localhost#8888:benchmark :async yes :results drawer :exports both + +#+TITLE: ePIC EEEMCal calorimetry PID +#+AUTHOR: Dmitry Kalinkin +#+OPTIONS: d:t + +#+LATEX_CLASS_OPTIONS: [9pt,letter] +#+BIND: org-latex-image-default-width "" +#+BIND: org-latex-image-default-option "scale=0.3" +#+BIND: org-latex-images-centered nil +#+BIND: org-latex-minted-options (("breaklines") ("bgcolor" "black!5") ("frame" "single")) +#+LATEX_HEADER: \usepackage[margin=1in]{geometry} +#+LATEX_HEADER: \setlength{\parindent}{0pt} +#+LATEX: \sloppy + +#+begin_src jupyter-python :results silent +import os +from pathlib import Path + +import awkward as ak +import boost_histogram as bh +import numpy as np +import vector +import uproot +from sklearn.metrics import roc_curve + +vector.register_awkward() +#+end_src + +* Parameters + +#+begin_src jupyter-python :results silent +DETECTOR_CONFIG=os.environ.get("DETECTOR_CONFIG") +PLOT_TITLE=os.environ.get("PLOT_TITLE") +INPUT_PIONS=os.environ.get("INPUT_PIONS", "").split(" ") +INPUT_ELECTRONS=os.environ.get("INPUT_ELECTRONS", "").split(" ") + +output_dir=Path(os.environ.get("OUTPUT_DIR", "./")) +output_dir.mkdir(parents=True, exist_ok=True) +#+end_src + +* Plotting setup + +#+begin_src jupyter-python :results silent +import matplotlib as mpl +import matplotlib.pyplot as plt + +def setup_presentation_style(): + mpl.rcParams.update(mpl.rcParamsDefault) + plt.style.use('ggplot') + plt.rcParams.update({ + 'axes.labelsize': 8, + 'axes.titlesize': 9, + 'figure.titlesize': 9, + 'figure.figsize': (4, 3), + 'legend.fontsize': 7, + 'xtick.labelsize': 8, + 'ytick.labelsize': 8, + 'pgf.rcfonts': False, + }) + +setup_presentation_style() +#+end_src + +* Analysis + +#+begin_src jupyter-python +def filter_pointing(events): + part_momentum = ak.zip({ + "m": events["MCParticles.mass"], + "px": events["MCParticles.momentum.x"], + "py": events["MCParticles.momentum.y"], + "pz": events["MCParticles.momentum.z"], + }, with_name="Momentum4D") + cond = (part_momentum.eta[:,0] > -3.5) & (part_momentum.eta[:,0] < -2.) + return events[cond] + +e = filter_pointing(uproot.concatenate({filename: "events" for filename in INPUT_ELECTRONS}, filter_name=["MCParticles.*", "*EcalEndcapN*"])) +pi = filter_pointing(uproot.concatenate({filename: "events" for filename in INPUT_PIONS}, filter_name=["MCParticles.*", "*EcalEndcapN*"])) + +e_train = e[:len(pi)//2] +pi_train = pi[:len(pi)//2] +e_eval = e[len(pi)//2:] +pi_eval = pi[len(pi)//2:] +#+end_src + +#+RESULTS: +:results: +:end: + +#+begin_src jupyter-python +nums = ak.num(pi_train["_EcalEndcapNParticleIDInput_features_floatData"], axis=1) +num_features = ak.min(nums[nums > 0]) +print(f"{num_features} features") +nums = ak.num(pi_train["_EcalEndcapNParticleIDTarget_int64Data"], axis=1) +num_targets = ak.min(nums[nums > 0]) +print(f"{num_targets} targets") + +pi_train_leading_cluster_ixs = ak.argsort(pi_train["EcalEndcapNClusters.energy"], ascending=False)[:,:1] +e_train_leading_cluster_ixs = ak.argsort(e_train["EcalEndcapNClusters.energy"], ascending=False)[:,:1] +pi_train_x = ak.flatten(ak.unflatten(pi_train["_EcalEndcapNParticleIDInput_features_floatData"], num_features, axis=1)[pi_train_leading_cluster_ixs]) +pi_train_y = ak.flatten(ak.unflatten(pi_train["_EcalEndcapNParticleIDTarget_int64Data"], num_targets, axis=1)[pi_train_leading_cluster_ixs]) +e_train_x = ak.flatten(ak.unflatten(e_train["_EcalEndcapNParticleIDInput_features_floatData"], num_features, axis=1)[e_train_leading_cluster_ixs]) +e_train_y = ak.flatten(ak.unflatten(e_train["_EcalEndcapNParticleIDTarget_int64Data"], num_targets, axis=1)[e_train_leading_cluster_ixs]) +train_x = ak.concatenate([pi_train_x, e_train_x]) +train_y = ak.concatenate([pi_train_y, e_train_y]) + +pi_eval_leading_cluster_ixs = ak.argsort(pi_eval["EcalEndcapNClusters.energy"], ascending=False)[:,:1] +e_eval_leading_cluster_ixs = ak.argsort(e_eval["EcalEndcapNClusters.energy"], ascending=False)[:,:1] +pi_eval_x = ak.flatten(ak.unflatten(pi_eval["_EcalEndcapNParticleIDInput_features_floatData"], num_features, axis=1)[pi_eval_leading_cluster_ixs]) +pi_eval_y = ak.flatten(ak.unflatten(pi_eval["_EcalEndcapNParticleIDTarget_int64Data"], num_targets, axis=1)[pi_eval_leading_cluster_ixs]) +e_eval_x = ak.flatten(ak.unflatten(e_eval["_EcalEndcapNParticleIDInput_features_floatData"], num_features, axis=1)[e_eval_leading_cluster_ixs]) +e_eval_y = ak.flatten(ak.unflatten(e_eval["_EcalEndcapNParticleIDTarget_int64Data"], num_targets, axis=1)[e_eval_leading_cluster_ixs]) +eval_x = ak.concatenate([pi_eval_x, e_eval_x]) +eval_y = ak.concatenate([pi_eval_y, e_eval_y]) +#+end_src + +#+RESULTS: +:results: +: 11 features +: 2 targets +:end: + +#+begin_src jupyter-python + +#+end_src + +#+RESULTS: +:results: +#+begin_export html +
[5.11,
+ 0.0424,
+ 3.03,
+ 2.16,
+ 17.7,
+ 8.32,
+ -4.54e-07,
+ 0.000456,
+ 0,
+ 69.2,
+ 0]
+------------------
+type: 11 * float32
+#+end_export +:end: + +#+begin_src jupyter-python +ak.sum((ak.num(pi_train_leading_cluster_ixs) != 0)), ak.num(pi_train_leading_cluster_ixs, axis=0) +#+end_src + +#+RESULTS: +:results: +| 87721 | array | (88210) | +:end: + +#+begin_src jupyter-python +plt.hist(pi_eval_x[:,0]) +plt.hist(e_eval_x[:,0], alpha=0.5) +plt.show() +#+end_src + +#+RESULTS: +:results: +[[file:./.ob-jupyter/5381c9bd149f0bb8855bf539e7ce8ef927a2e1a9.png]] +:end: + +#+begin_src jupyter-python +""" +fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(15, 6)) +fig_log, axs_log = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(15, 6)) +fig_roc, axs_roc = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(15, 6)) + +axs = np.ravel(np.array(axs)) +axs_log = np.ravel(np.array(axs_log)) +axs_roc = np.ravel(np.array(axs_roc)) + +rocs = {} + +for ix, energy in enumerate(energies): + for c in [False, True]: + energy_value = float(energy.replace("GeV", "").replace("MeV", "e-3")) + if c: + clf_label = "leading cluster" + else: + clf_label = "sum all hits" + def clf(events): + if c: + return ak.drop_none(ak.max(events["EcalEndcapNClusters.energy"], axis=-1)) / energy_value + else: + return ak.sum(events["EcalEndcapNRecHits.energy"], axis=-1) / energy_value + e_pred = clf(e_eval[energy]) + pi_pred = clf(pi_eval[energy]) + + for do_log in [False, True]: + plt.sca(axs[ix]) + plt.hist(e_pred, bins=np.linspace(0., 1.01, 101), label=rf"$e^-$ {clf_label}") + plt.hist(pi_pred, bins=np.linspace(0., 1.01, 101), label=rf"$\pi^-$ {clf_label}", histtype="step") + plt.title(f"{energy}") + plt.legend() + if do_log: plt.yscale("log") + + plt.sca(axs_roc[ix]) + fpr, tpr, _ = roc_curve( + np.concatenate([np.ones_like(e_pred), np.zeros_like(pi_pred)]), + np.concatenate([e_pred, pi_pred]), + ) + cond = fpr != 0 # avoid infinite rejection (region of large uncertainty) + cond &= tpr != 1 # avoid linear interpolation (region of large uncertainty) + def mk_interp(tpr, fpr): + def interp(eff): + return np.interp(eff, tpr, fpr) + return interp + rocs.setdefault(clf_label, {})[energy] = mk_interp(tpr, fpr) + plt.plot(tpr[cond] * 100, 1 / fpr[cond], label=f"{clf_label}") + plt.title(f"{energy}") + plt.legend() + +fig.show() +plt.close(fig_log) +fig_roc.show() + +plt.figure() +for clf_label, roc in rocs.items(): + plt.plot( + [float(energy.replace("GeV", "").replace("MeV", "e-3")) for energy in energies], + [1 / roc[energy](0.95) for energy in energies], + marker=".", + label=f"{clf_label}", + ) +plt.legend() +plt.show() +""" +#+end_src + +#+begin_src jupyter-python +import catboost +clf = {} + +from sklearn.metrics import roc_curve +roc = {} + +clf = catboost.CatBoostClassifier(loss_function="CrossEntropy", verbose=0, n_estimators=1000) +clf.fit( + train_x.to_numpy(), + train_y.to_numpy()[:,1], # index 1 = is electron +) +plt.hist(clf.predict_proba(e_eval_x.to_numpy())[:,1], bins=np.linspace(0., 1.01, 101), label=r"$e^-$") +plt.hist(clf.predict_proba(pi_eval_x.to_numpy())[:,1], bins=np.linspace(0., 1.01, 101), label=r"$\pi^-$", histtype="step") +plt.xlabel("Classifier's probability prediction", loc="right") +plt.ylabel("Number of events", loc="top") +plt.legend(loc="upper center") +plt.savefig(output_dir / "predict_proba.pdf", bbox_inches="tight") +plt.show() +#+end_src + +#+begin_src jupyter-python +energy_bin_edges = np.arange(0., 20. + 1e-7, 1.) + +_eval_energy = eval_x[:,0] + +for energy_bin_ix, (energy_bin_low, energy_bin_high) in enumerate(zip(energy_bin_edges[:-1], energy_bin_edges[1:])): + cond = (_eval_energy >= energy_bin_low) & (_eval_energy < energy_bin_high) + print(energy_bin_low, energy_bin_high, ak.sum(cond)) + + pi_cond = (pi_eval_x[:,0] >= energy_bin_low) & (pi_eval_x[:,0] < energy_bin_high) + e_cond = (e_eval_x[:,0] >= energy_bin_low) & (e_eval_x[:,0] < energy_bin_high) + plt.hist(pi_eval_x[pi_cond][:,1], bins=np.linspace(0., 1.01, 101)) + plt.hist(e_eval_x[e_cond][:,1], bins=np.linspace(0., 1.01, 101)) + plt.yscale("log") + plt.show() + plt.clf() + + fpr, tpr, _ = roc_curve( + eval_y[cond][:,1], + #eval_x[cond][:,1], + clf.predict_proba(eval_x[cond].to_numpy())[:,1], + ) + cond = fpr != 0 # avoid infinite rejection (region of large uncertainty) + cond &= tpr != 1 # avoid linear interpolation (region of large uncertainty) + #cond &= tpr > 0.5 + plt.plot(tpr[cond] * 100, 1 / fpr[cond]) + + def mk_interp(tpr, fpr): + def interp(eff): + return np.interp(eff, tpr, fpr) + return interp + roc[energy_bin_ix] = mk_interp(tpr, fpr) + + plt.xlabel("Electron efficiency, %", loc="right") + plt.ylabel("Pion rejection factor", loc="top") + plt.title(rf"${energy_bin_low:.1f} < |\vec{{p}}| < {energy_bin_high:.1f}$ GeV") + plt.legend(loc="lower left") + plt.yscale("log") + plt.savefig(output_dir / f"roc_{energy_bin_low:.1f}_{energy_bin_high:.1f}.pdf", bbox_inches="tight") + plt.show() + plt.clf() + +plt.plot( + (energy_bin_edges[:-1] + energy_bin_edges[1:]) / 2, + [1 / roc[energy_bin_ix](0.95) for energy_bin_ix in range(len(energy_bin_edges) - 1)], + marker=".", + label="", +) +plt.yscale("log") +plt.legend() +plt.xlabel("Energy, GeV", loc="right") +plt.ylabel("Pion rejection at 95%", loc="top") +plt.savefig(output_dir / f"pion_rej.pdf", bbox_inches="tight") +plt.show() +#+end_src + +#+begin_src jupyter-python +clf.save_model( + output_dir / "EcalEndcapN_pi_rejection.onnx", + format="onnx", + export_parameters={ + "onnx_doc_string": "Classifier model for pion rejection in EEEMCal", + "onnx_graph_name": "CalorimeterParticleID_BinaryClassification", + } +) +import onnx + +model = onnx.load(output_dir / "EcalEndcapN_pi_rejection.onnx") +onnx.checker.check_model(model) +graph_def = onnx.helper.make_graph( + nodes=[model.graph.node[0]], + name=model.graph.name, + inputs=model.graph.input, + outputs=[model.graph.output[0], model.graph.value_info[0]], + initializer=model.graph.initializer +) +model_def = onnx.helper.make_model(graph_def, producer_name=model.producer_name) +del model_def.opset_import[:] +op_set = model_def.opset_import.add() +op_set.domain = "ai.onnx.ml" +op_set.version = 2 +model_def = onnx.shape_inference.infer_shapes(model_def) +onnx.checker.check_model(model_def) +onnx.save(model_def, output_dir / "EcalEndcapN_pi_rejection.onnx") +#+end_src + +#+RESULTS: +:results: +:end: + +#+begin_src jupyter-python +if "_EcalEndcapNParticleIDOutput_probability_tensor_floatData" in pi_train.fields: + nums = ak.num(pi_train["_EcalEndcapNParticleIDOutput_probability_tensor_floatData"], axis=1) + num_outputs = ak.min(nums[nums > 0]) + print(f"{num_outputs} outputs") + + pi_train_proba = ak.flatten(ak.unflatten(pi_train["_EcalEndcapNParticleIDOutput_probability_tensor_floatData"], num_outputs, axis=1)[pi_train_leading_cluster_ixs]) + e_train_proba = ak.flatten(ak.unflatten(e_train["_EcalEndcapNParticleIDOutput_probability_tensor_floatData"], num_outputs, axis=1)[e_train_leading_cluster_ixs]) + train_proba = ak.concatenate([pi_train_proba, e_train_proba]) + + pi_eval_proba = ak.flatten(ak.unflatten(pi_eval["_EcalEndcapNParticleIDOutput_probability_tensor_floatData"], num_outputs, axis=1)[pi_eval_leading_cluster_ixs]) + e_eval_proba = ak.flatten(ak.unflatten(e_eval["_EcalEndcapNParticleIDOutput_probability_tensor_floatData"], num_outputs, axis=1)[e_eval_leading_cluster_ixs]) + eval_proba = ak.concatenate([pi_eval_proba, e_eval_proba]) + + plt.hist(clf.predict_proba(eval_x.to_numpy())[:,1] - eval_proba[:,1].to_numpy()) + plt.show() +else: + print("EcalEndcapNParticleIDOutput not present") +#+end_src diff --git a/benchmarks/calo_pid/config.yml b/benchmarks/calo_pid/config.yml new file mode 100644 index 00000000..49211c76 --- /dev/null +++ b/benchmarks/calo_pid/config.yml @@ -0,0 +1,45 @@ +sim:calo_pid: + extends: .det_benchmark + stage: simulate + parallel: + matrix: + - PARTICLE: ["e-", "pi-"] + INDEX_RANGE: [ + "0 9", + "10 19", + "20 29", + "30 39", + "40 49", + "50 59", + "60 69", + "70 79", + "80 89", + "90 99", + ] + script: + - | + snakemake --cache --cores 5 \ + $(seq --format="sim_output/calo_pid/epic_inner_detector/${PARTICLE}/100MeVto20GeV/130to177deg/${PARTICLE}_100MeVto20GeV_130to177deg.%04.f.eicrecon.tree.edm4eic.root" ${INDEX_RANGE}) + +bench:calo_pid: + allow_failure: true # until inference merged into EICrecon + extends: .det_benchmark + stage: benchmarks + needs: + - ["sim:calo_pid"] + script: + - export PYTHONUSERBASE=$LOCAL_DATA_PATH/deps + - pip install -r benchmarks/calo_pid/requirements.txt + - snakemake --cores 1 results/epic_inner_detector/calo_pid + +collect_results:calo_pid: + allow_failure: true # until inference merged into EICrecon + extends: .det_benchmark + stage: collect + needs: + - "bench:calo_pid" + script: + - ls -lrht + - mv results{,_save}/ # move results directory out of the way to preserve it + - snakemake --cores 1 --delete-all-output results/epic_inner_detector/calo_pid + - mv results{_save,}/ diff --git a/benchmarks/calo_pid/requirements.txt b/benchmarks/calo_pid/requirements.txt new file mode 100644 index 00000000..dd564a91 --- /dev/null +++ b/benchmarks/calo_pid/requirements.txt @@ -0,0 +1,6 @@ +awkward >= 2.4.0 +catboost +onnx +scikit-learn +uproot >= 5.2.0 +vector