From 4a5c33521a39211743a55a42ff2363cc0d9fdcc7 Mon Sep 17 00:00:00 2001 From: Sakib Rahman Date: Wed, 10 Jan 2024 13:06:46 -0500 Subject: [PATCH] Add initial script for training neural network for roman pots momentum reconstruction. Function create a parametried dense neural network and train it with standardized input data. --- .../roman_pots/train_dense_neural_network.py | 92 +++++++++++++++++++ 1 file changed, 92 insertions(+) create mode 100644 benchmarks/roman_pots/train_dense_neural_network.py diff --git a/benchmarks/roman_pots/train_dense_neural_network.py b/benchmarks/roman_pots/train_dense_neural_network.py new file mode 100644 index 00000000..0e0b176e --- /dev/null +++ b/benchmarks/roman_pots/train_dense_neural_network.py @@ -0,0 +1,92 @@ +import pandas as pd +import numpy as np +import seaborn as sb +import torch +import torch.nn as nn +import torch.optim as optim +import torch.optim.lr_scheduler as lr_scheduler +import matplotlib.pyplot as plt +torch.set_default_dtype(torch.float32) + +if torch.cuda.is_available(): + device = torch.device("cuda") + print("GPU is available!") +else: + device = torch.device("cpu") + print("GPU not found. Using CPU.") + +class NeuralNet(nn.Module): + def __init__(self, size_input, size_output, n_layers, size_firsthiddenlayer=128, multiplier=0.5, leak_rate=0.025): + super().__init__() + self.fc = [] + self.relu = [] + self.n_layers = n_layers + self.fc.append(nn.Linear(size_input,size_firsthiddenlayer)) + self.relu.append(nn.LeakyReLU(leak_rate)) + for i in range(1,n_layers-1): + size_currenthiddenlayer = int(size_firsthiddenlayer*multiplier**i) + self.fc.append(nn.Linear(int(size_currenthiddenlayer/multiplier), size_currenthiddenlayer)) + self.relu.append(nn.LeakyReLU(leak_rate)) + self.fc.append(nn.Linear(size_currenthiddenlayer, size_output)) + self.fc=nn.ParameterList(self.fc) + self.relu=nn.ParameterList(self.relu) + print("Create a network with the linear layers "+str(self.fc)) + print("and leaky relu activation layers "+str(self.relu)) + + def forward(self, x): + for i in range(0,self.n_layers-1): + x = self.fc[i](x) + x = self.relu[i](x) + x = self.fc[self.n_layers-1](x) + return x + +def standardize(tensor): + mean = torch.mean(tensor, axis=0) + std = torch.std(tensor, axis=0) + standardized_tensor = (tensor - mean) / std + return standardized_tensor + +def train_model(input_tensor, target_tensor, model): + + # Define the loss function and optimizer + criterion = torch.nn.HuberLoss(reduction='mean', delta=1.0) + optimizer = torch.optim.Adam(model.parameters(), lr=0.01) + + # Create a learning rate scheduler + scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,'min',patience=100,cooldown=100,factor=0.5,threshold=1e-4,verbose=True) + + # Track the losses + losses = [] + + # Train the model + for epoch in range(num_epochs): + # Forward pass + inputs, targets = input_tensor.to(device), target_tensor.to(device) + predictions = model(inputs) + loss = criterion(predictions, targets) + + # Backward and optimize + optimizer.zero_grad() + loss.backward() + optimizer.step() + + # Track the loss value at each epoch + losses.append(loss.item()) + + # Step the learning rate scheduler + scheduler.step(loss) + + # Print progress + if (epoch + 1) % 10 == 0: + print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.3e}') + + # Plot the loss values + plt.plot(range(1, num_epochs+1), losses) + plt.xlabel('Epoch') + plt.ylabel('Loss') + plt.title('Loss as a Function of Epoch') + plt.savefig('Loss vs Epoch') + + return model + +