-
Notifications
You must be signed in to change notification settings - Fork 24
/
rir_generator.cpp
458 lines (406 loc) · 14.7 KB
/
rir_generator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*
Program : Room Impulse Response Generator
Description : Computes the response of an acoustic source to one or more
microphones in a reverberant room using the image method [1,2].
[1] J.B. Allen and D.A. Berkley,
Image method for efficiently simulating small-room acoustics,
Journal Acoustic Society of America, 65(4), April 1979, p 943.
[2] P.M. Peterson,
Simulating the response of multiple microphones to a single
acoustic source in a reverberant room, Journal Acoustic
Society of America, 80(5), November 1986.
Author : dr.ir. E.A.P. Habets ([email protected])
Version : 2.0.20100920
History : 1.0.20030606 Initial version
1.1.20040803 + Microphone directivity
+ Improved phase accuracy [2]
1.2.20040312 + Reflection order
1.3.20050930 + Reverberation Time
1.4.20051114 + Supports multi-channels
1.5.20051116 + High-pass filter [1]
+ Microphone directivity control
1.6.20060327 + Minor improvements
1.7.20060531 + Minor improvements
1.8.20080713 + Minor improvements
1.9.20090822 + 3D microphone directivity control
2.0.20100920 + Calculation of the source-image position
changed in the code and tutorial.
This ensures a proper response to reflections
in case a directional microphone is used.
Copyright (C) 2003-2010 E.A.P. Habets, The Netherlands.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define _USE_MATH_DEFINES
#include "matrix.h"
#include "mex.h"
#include "math.h"
#define ROUND(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
double sinc(double x)
{
if (x == 0)
return(1.);
else
return(sin(x)/x);
}
double sim_microphone(double x, double y, double z, double* angle, char mtype)
{
if (mtype=='b' || mtype=='c' || mtype=='s' || mtype=='h')
{
double strength, vartheta, varphi, alpha;
// Polar Pattern alpha
// ---------------------------
// Bidirectional 0
// Hypercardioid 0.25
// Cardioid 0.5
// Subcardioid 0.75
// Omnidirectional 1
switch(mtype)
{
case 'b':
alpha = 0;
break;
case 'h':
alpha = 0.25;
break;
case 'c':
alpha = 0.5;
break;
case 's':
alpha = 0.75;
break;
};
vartheta = acos(z/sqrt(pow(x,2)+pow(y,2)+pow(z,2)));
varphi = atan2(y,x);
strength = sin(M_PI/2-angle[1]) * sin(vartheta) * cos(angle[0]-varphi) + cos(M_PI/2-angle[1]) * cos(vartheta);
strength = alpha + (1-alpha) * strength;
return strength;
}
else
{
return 1;
}
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
if (nrhs == 0)
{
mexPrintf("--------------------------------------------------------------------\n"
"| Room Impulse Response Generator |\n"
"| |\n"
"| Computes the response of an acoustic source to one or more |\n"
"| microphones in a reverberant room using the image method [1,2]. |\n"
"| |\n"
"| Author : dr.ir. Emanuel Habets ([email protected]) |\n"
"| |\n"
"| Version : 2.0.20100920 |\n"
"| |\n"
"| Copyright (C) 2003-2010 E.A.P. Habets, The Netherlands. |\n"
"| |\n"
"| [1] J.B. Allen and D.A. Berkley, |\n"
"| Image method for efficiently simulating small-room acoustics,|\n"
"| Journal Acoustic Society of America, |\n"
"| 65(4), April 1979, p 943. |\n"
"| |\n"
"| [2] P.M. Peterson, |\n"
"| Simulating the response of multiple microphones to a single |\n"
"| acoustic source in a reverberant room, Journal Acoustic |\n"
"| Society of America, 80(5), November 1986. |\n"
"--------------------------------------------------------------------\n\n"
"function [h, beta_hat] = rir_generator(c, fs, r, s, L, beta, nsample,\n"
" mtype, order, dim, orientation, hp_filter);\n\n"
"Input parameters:\n"
" c : sound velocity in m/s.\n"
" fs : sampling frequency in Hz.\n"
" r : M x 3 array specifying the (x,y,z) coordinates of the\n"
" receiver(s) in m.\n"
" s : 1 x 3 vector specifying the (x,y,z) coordinates of the\n"
" source in m.\n"
" L : 1 x 3 vector specifying the room dimensions (x,y,z) in m.\n"
" beta : 1 x 6 vector specifying the reflection coefficients\n"
" [beta_x1 beta_x2 beta_y1 beta_y2 beta_z1 beta_z2] or\n"
" beta = Reverberation Time (T_60) in seconds.\n"
" nsample : number of samples to calculate, default is T_60*fs.\n"
" mtype : [omnidirectional, subcardioid, cardioid, hypercardioid,\n"
" bidirectional], default is omnidirectional.\n"
" order : reflection order, default is -1, i.e. maximum order.\n"
" dim : room dimension (2 or 3), default is 3.\n"
" orientation : direction in which the microphones are pointed, specified using\n"
" azimuth and elevation angles (in radians), default is [0 0].\n"
" hp_filter : use 'false' to disable high-pass filter, the high-pass filter\n"
" is enabled by default.\n\n"
"Output parameters:\n"
" h : M x nsample matrix containing the calculated room impulse\n"
" response(s).\n"
" beta_hat : In case a reverberation time is specified as an input parameter\n"
" the corresponding reflection coefficient is returned.\n\n");
return;
}
else
{
mexPrintf("Room Impulse Response Generator (Version 2.0.20100920) by Emanuel Habets\n"
"Copyright (C) 2003-2010 E.A.P. Habets, The Netherlands.\n");
}
// Check for proper number of arguments
if (nrhs < 6)
mexErrMsgTxt("Error: There are at least six input parameters required.");
if (nrhs > 12)
mexErrMsgTxt("Error: Too many input arguments.");
if (nlhs > 2)
mexErrMsgTxt("Error: Too many output arguments.");
// Check for proper arguments
if (!(mxGetN(prhs[0])==1) || !mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]))
mexErrMsgTxt("Invalid input arguments!");
if (!(mxGetN(prhs[1])==1) || !mxIsDouble(prhs[1]) || mxIsComplex(prhs[1]))
mexErrMsgTxt("Invalid input arguments!");
if (!(mxGetN(prhs[2])==3) || !mxIsDouble(prhs[2]) || mxIsComplex(prhs[2]))
mexErrMsgTxt("Invalid input arguments!");
if (!(mxGetN(prhs[3])==3) || !mxIsDouble(prhs[3]) || mxIsComplex(prhs[3]))
mexErrMsgTxt("Invalid input arguments!");
if (!(mxGetN(prhs[4])==3) || !mxIsDouble(prhs[4]) || mxIsComplex(prhs[4]))
mexErrMsgTxt("Invalid input arguments!");
if (!(mxGetN(prhs[5])==6 || mxGetN(prhs[5])==1) || !mxIsDouble(prhs[5]) || mxIsComplex(prhs[5]))
mexErrMsgTxt("Invalid input arguments!");
// Load parameters
double c = mxGetScalar(prhs[0]);
double fs = mxGetScalar(prhs[1]);
const double* rr = mxGetPr(prhs[2]);
int nr_of_mics = (int) mxGetM(prhs[2]);
const double* ss = mxGetPr(prhs[3]);
const double* LL = mxGetPr(prhs[4]);
const double* beta_ptr = mxGetPr(prhs[5]);
double* beta = new double[6];
int nsamples;
char* mtype;
int order;
int dim;
double angle[2];
int hp_filter;
double TR;
plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
double* beta_hat = mxGetPr(plhs[1]);
beta_hat[0] = 0;
// Reflection coefficients or Reverberation Time?
if (mxGetN(prhs[5])==1)
{
double V = LL[0]*LL[1]*LL[2];
double S = 2*(LL[0]*LL[2]+LL[1]*LL[2]+LL[0]*LL[1]);
TR = beta_ptr[0];
double alfa = 24*V*log(10.0)/(c*S*TR);
if (alfa > 1)
mexErrMsgTxt("Error: The reflection coefficients cannot be calculated using the current "
"room parameters, i.e. room size and reverberation time.\n Please "
"specify the reflection coefficients or change the room parameters.");
beta_hat[0] = sqrt(1-alfa);
for (int i=0;i<6;i++)
beta[i] = beta_hat[0];
}
else
{
for (int i=0;i<6;i++)
beta[i] = beta_ptr[i];
}
// High-pass filter (optional)
if (nrhs > 11 && mxIsEmpty(prhs[11]) == false)
{
hp_filter = (int) mxGetScalar(prhs[11]);
}
else
{
hp_filter = 1;
}
// 3D Microphone orientation (optional)
if (nrhs > 10 && mxIsEmpty(prhs[10]) == false)
{
const double* orientation = mxGetPr(prhs[10]);
if (mxGetN(prhs[10]) == 1)
{
angle[0] = orientation[0];
angle[1] = 0;
}
else
{
angle[0] = orientation[0];
angle[1] = orientation[1];
}
}
else
{
angle[0] = 0;
angle[1] = 0;
}
// Room Dimension (optional)
if (nrhs > 9 && mxIsEmpty(prhs[9]) == false)
{
dim = (int) mxGetScalar(prhs[9]);
if (dim != 2 && dim != 3)
mexErrMsgTxt("Invalid input arguments!");
if (dim == 2)
{
beta[4] = 0;
beta[5] = 0;
}
}
else
{
dim = 3;
}
// Reflection order (optional)
if (nrhs > 8 && mxIsEmpty(prhs[8]) == false)
{
order = (int) mxGetScalar(prhs[8]);
if (order < -1)
mexErrMsgTxt("Invalid input arguments!");
}
else
{
order = -1;
}
// Type of microphone (optional)
if (nrhs > 7 && mxIsEmpty(prhs[7]) == false)
{
mtype = new char[mxGetN(prhs[7])+1];
mxGetString(prhs[7], mtype, mxGetN(prhs[7])+1);
}
else
{
mtype = new char[1];
mtype[0] = 'o';
}
// Number of samples (optional)
if (nrhs > 6 && mxIsEmpty(prhs[6]) == false)
{
nsamples = (int) mxGetScalar(prhs[6]);
}
else
{
if (mxGetN(prhs[5])>1)
{
double V = LL[0]*LL[1]*LL[2];
double S = 2*(LL[0]*LL[2]+LL[1]*LL[2]+LL[0]*LL[1]);
double alpha = ((1-pow(beta[0],2))+(1-pow(beta[1],2)))*LL[0]*LL[2] +
((1-pow(beta[2],2))+(1-pow(beta[3],2)))*LL[1]*LL[2] +
((1-pow(beta[4],2))+(1-pow(beta[5],2)))*LL[0]*LL[1];
TR = 24*log(10.0)*V/(c*alpha);
if (TR < 0.128)
TR = 0.128;
}
nsamples = (int) (TR * fs);
}
// Create output vector
plhs[0] = mxCreateDoubleMatrix(nr_of_mics, nsamples, mxREAL);
double* imp = mxGetPr(plhs[0]);
// Temporary variables and constants (high-pass filter)
const double W = 2*M_PI*100/fs;
const double R1 = exp(-W);
const double B1 = 2*R1*cos(W);
const double B2 = -R1 * R1;
const double A1 = -(1+R1);
double X0;
double* Y = new double[3];
// Temporary variables and constants (image-method)
const double Fc = 1;
const int Tw = 2 * ROUND(0.004*fs);
const double cTs = c/fs;
double* hanning_window = new double[Tw+1];
double* LPI = new double[Tw+1];
double* r = new double[3];
double* s = new double[3];
double* L = new double[3];
double hu[6];
double refl[3];
double dist;
double ll;
double strength;
int pos, fdist;
int n1,n2,n3;
int q, j, k;
int mx, my, mz;
int n;
s[0] = ss[0]/cTs; s[1] = ss[1]/cTs; s[2] = ss[2]/cTs;
L[0] = LL[0]/cTs; L[1] = LL[1]/cTs; L[2] = LL[2]/cTs;
// Hanning window
for (n = 0 ; n < Tw+1 ; n++)
{
hanning_window[n] = 0.5 * (1 + cos(2*M_PI*(n+Tw/2)/Tw));
}
for (int mic_nr = 0; mic_nr < nr_of_mics ; mic_nr++)
{
// [x_1 x_2 ... x_N y_1 y_2 ... y_N z_1 z_2 ... z_N]
r[0] = rr[mic_nr + 0*nr_of_mics] / cTs;
r[1] = rr[mic_nr + 1*nr_of_mics] / cTs;
r[2] = rr[mic_nr + 2*nr_of_mics] / cTs;
n1 = (int) ceil(nsamples/(2*L[0]));
n2 = (int) ceil(nsamples/(2*L[1]));
n3 = (int) ceil(nsamples/(2*L[2]));
// Generate room impulse response
for (mx = -n1 ; mx <= n1 ; mx++)
{
hu[0] = 2*mx*L[0];
for (my = -n2 ; my <= n2 ; my++)
{
hu[1] = 2*my*L[1];
for (mz = -n3 ; mz <= n3 ; mz++)
{
hu[2] = 2*mz*L[2];
for (q = 0 ; q <= 1 ; q++)
{
hu[3] = (1-2*q)*s[0] - r[0] + hu[0];
refl[0] = pow(beta[0], abs(mx-q)) * pow(beta[1], abs(mx));
for (j = 0 ; j <= 1 ; j++)
{
hu[4] = (1-2*j)*s[1] - r[1] + hu[1];
refl[1] = pow(beta[2], abs(my-j)) * pow(beta[3], abs(my));
for (k = 0 ; k <= 1 ; k++)
{
hu[5] = (1-2*k)*s[2] - r[2] + hu[2];
refl[2] = pow(beta[4],abs(mz-k)) * pow(beta[5], abs(mz));
dist = sqrt(pow(hu[3], 2) + pow(hu[4], 2) + pow(hu[5], 2));
if (abs(2*mx-q)+abs(2*my-j)+abs(2*mz-k) <= order || order == -1)
{
fdist = (int) floor(dist);
if (fdist < nsamples)
{
strength = sim_microphone(hu[3], hu[4], hu[5], angle, mtype[0])
* refl[0]*refl[1]*refl[2]/(4*M_PI*dist*cTs);
for (n = 0 ; n < Tw+1 ; n++)
LPI[n] = hanning_window[n] * Fc * sinc(M_PI*Fc*(n-(dist-fdist)-(Tw/2)));
pos = fdist-(Tw/2);
for (n = 0 ; n < Tw+1; n++)
if (pos+n >= 0 && pos+n < nsamples)
imp[mic_nr + nr_of_mics*(pos+n)] += strength * LPI[n];
}
}
}
}
}
}
}
}
// 'Original' high-pass filter as proposed by Allen and Berkley.
if (hp_filter == 1)
{
for (int idx = 0 ; idx < 3 ; idx++) {Y[idx] = 0;}
for (int idx = 0 ; idx < nsamples ; idx++)
{
X0 = imp[mic_nr+nr_of_mics*idx];
Y[2] = Y[1];
Y[1] = Y[0];
Y[0] = B1*Y[1] + B2*Y[2] + X0;
imp[mic_nr+nr_of_mics*idx] = Y[0] + A1*Y[1] + R1*Y[2];
}
}
}
}